首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK) signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf), which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved.  相似文献   

2.
Deleted in liver cancer 1 (DLC1) is a tumor suppressor protein that is frequently downregulated in various tumor types. DLC1 contains a Rho GTPase activating protein (GAP) domain that appears to be required for its tumor suppressive functions. Little is known about the molecular mechanisms that regulate DLC1. By mass spectrometry we have mapped a novel phosphorylation site within the DLC1 GAP domain on serine 807. Using a phospho-S807-specific antibody, our results identify protein kinase D (PKD) to phosphorylate this site in DLC1 in intact cells. Although phosphorylation on serine 807 did not directly impact on in vitro GAP activity, a DLC1 serine-to-alanine exchange mutant inhibited colony formation more potently than the wild type protein. Our results thus show that PKD-mediated phosphorylation of DLC1 on serine 807 negatively regulates DLC1 cellular function.  相似文献   

3.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs via tyrosine phosphorylation at specific residues. Although several tyrosine phosphorylation events have been linked to FAK activation and downstream signal transduction, the function of FAK phosphorylation at Tyr(407) was previously unknown. Here, we show for the first time that phosphorylation of FAK Tyr(407) increases during serum starvation, contact inhibition, and cell cycle arrest, all conditions under which activating FAK Tyr(397) phosphorylation decreases. Transfection of NIH3T3 cells with a phosphorylation-mimicking FAK 407E mutant decreased autophosphorylation at Tyr(397) and inhibited both FAK kinase activity in vitro and FAK-mediated functions such as cell adhesion, spreading, proliferation, and migration. The opposite effects were observed in cells transfected with nonphosphorylatable mutant FAK 407F. Taken together, these data suggest the novel concept that FAK Tyr(407) phosphorylation negatively regulates the enzymatic and biological activities of FAK.  相似文献   

4.
Dystrophin and the dystrophin-associated protein complex (DAPC) have recently been implicated in cell signalling events. These proteins are ideally placed to transduce signals from the extracellular matrix (ECM) to the cytoskeleton. Here we show that beta-dystroglycan is tyrosine-phosphorylated in C2/C4 mouse myotubes. Tyrosine phosphorylation was detected by mobility shifts on SDS-polyacrylamide gels (SDS-PAGE) and confirmed by immunoprecipitation and two-dimensional gel electrophoresis. The potential functional significance of this tyrosine phosphorylation was investigated using peptide 'SPOTs' assays. Phosphorylation of tyrosine in the 15 most C-terminal amino acids of beta-dystroglycan disrupts its interaction with dystrophin. The tyrosine residue in beta-dystroglycan's WW-binding motif PPPY appears to be the most crucial in disrupting the beta-dystroglycan-dystrophin interaction. beta-dystroglycan forms the essential link between dystrophin and the rest of the DAPC. This regulation by tyrosine phosphorylation may have implications in the pathogenesis and treatment of Duchenne's muscular dystrophy (DMD).  相似文献   

5.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

6.
Cytoplasmic dynein is a microtubule-associated motor that utilizes ATP hydrolysis to conduct minus-end directed transport of various organelles. Dynactin is a multisubunit complex that has been proposed to both link dynein with cargo and activate dynein motor function. The mechanisms by which dynactin regulates dynein activity are not clear. In this study, we examine the role of dynactin in regulating dynein ATPase activity. We show that dynein-microtubule binding and ATP-dependent release of dynein from microtubules are reduced in dynactin null mutants, Deltaro-3 (p150(Glued)) and Deltaro-4 (Arp1), relative to wild-type. The dynein-microtubule binding activity, but not the ATP-dependent release of dynein from microtubules, is restored by in vitro mixing of extracts from dynein and dynactin mutants. Dynein produced in a Deltaro-3 mutant has approximately 8-fold reduced ATPase activity relative to dynein isolated from wild-type. However, dynein ATPase activity from wild-type is not reduced when dynactin is separated from dynein, suggesting that dynein produced in a dynactin mutant is inactivated. Treatment of dynein isolated from the Deltaro-3 mutant with lambda protein phosphatase restores the ATPase activity to near wild-type levels. The reduced dynein ATPase activity observed in dynactin null mutants is mainly due to altered affinity for ATP. Radiolabeling experiments revealed that low molecular mass proteins, particularly 20- and 8-kDa proteins, that immunoprecipitate with dynein heavy chain are hyperphosphorylated in the dynactin mutant and dephosphorylated upon lambda protein phosphatase treatment. The results suggest that cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation of dynein light chains.  相似文献   

7.
Mucolipins constitute a family of cation channels with homology with the transient receptor potential family. Mutations in MCOLN1 (mucolipin 1) have been linked to mucolipidosis type IV, a recessive lysosomal storage disease characterized by severe neurological and ophthalmologic abnormalities. At present, little is known about the mechanisms that regulate MCOLN1 activity. In the present paper, we addressed whether MCOLN1 activity is regulated by phosphorylation. We identified two PKA (protein kinase A) consensus motifs in the C-terminal tail of MCOLN1, containing Ser(557) and Ser(559). Ser(557) was the principal phosphorylation site, as mutation of this residue to alanine caused a greater than 75% reduction in the total levels of phosphorylated MCOLN1 C-terminal tail. Activation of PKA with forskolin promoted MCOLN1 phosphorylation, both in vitro and in vivo. In contrast, addition of the PKA inhibitor H89 abolished MCOLN1 phosphorylation. We also found that PKA-mediated phosphorylation regulates MCOLN1 channel activity. Forskolin treatment decreased MCOLN1 channel activity, whereas treatment with H89 increased MCOLN1 channel activity. The stimulatory effect of H89 on MCOLN1 function was not observed when Ser(557) and Ser(559) were mutated to alanine residues, indicating that these two residues are essential for PKA-mediated negative regulation of MCOLN1. This paper presents the first example of regulation of a member of the mucolipin family by phosphorylation.  相似文献   

8.
Phospholipase D (PLD) forms the major family of phospholipases that was first discovered and cloned in plants. In this report we have shown, for the first time, that C2 phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent PLD(s) from 5 day hypocotyls of Brassica oleracea associated with plasma membrane is covalently modified-phosphorylated. Pre-incubation of the plasma membrane fraction with acid phosphatase resulted in concentration-dependent inhibition of PIP2-dependent PLD activity. Using matrix-assisted laser desorption/ionization time of flight mass spectrometry of tryptic in-gel digests, the BoPLDgamma(1,2) isoform was identified. Comparing the spectra of the proteins obtained from the plasma membrane fractions treated and non-treated with acid phosphatase, three peptides differing in the mass of the phosphate group (80 Da) were revealed: TMQMMYQTIYK, EVADGTVSVYNSPR and KASKSRGLGK which possess five potential Ser/Thr phosphorylation sites. Our findings suggest that a phosphorylation/dephosphorylation mechanism may be involved in the regulation of plant PIP2-dependent PLDgamma activity.  相似文献   

9.
Arf GAP2 is one of four Arf GAPs that function in the Golgi apparatus. We characterized the kinetics of Arf GAP2 and its regulation. Purified Arf GAP2 had little activity compared to purified Arf GAP1. Of the potential regulators we examined, coatomer had the greatest effect, stimulating activity one to two orders of magnitude. The effect was biphasic, with half-maximal activation observed at 50 nM coatomer and activation peaking at ≈ 150 nM coatomer. Activation by coatomer was greater for Arf GAP2 than has been reported for Arf GAP1. The effects of phosphoinositides and changes in vesicle curvature on GAP activity were small compared to coatomer; however, both increased coatomer-dependent activity. Peptides from p24 cargo proteins increased Arf GAP2 activity by an additional 2- to 4-fold. The effect of cargo peptide was dependent on coatomer. Overexpressing the cargo protein p25 decreased cellular Arf1?GTP levels. The differential sensitivity of Arf GAP1 and Arf GAP2 to coatomer could coordinate their activities. Based on the common regulatory features of Arf GAP1 and 2, we propose a mechanism for cargo selection in which GTP hydrolysis triggered by cargo binding to the coat protein is coupled to coat polymerization.  相似文献   

10.
PKC-delta is important in cell growth, apoptosis, and secretion. Recent studies show its stability is regulated by tyrosine phosphorylation (TYR-P), which can be stimulated by a number of agents. Many of these stimuli also activate phospholipase C (PLC) cascades and little is known about the relationship between these cascades and PKC-delta TYR-P. Cholecystokinin (CCK) stimulates PKCs but it is unknown if it causes PKC-delta TYR-P and if so, the relationship between these cascades is unknown. In rat pancreatic acini, CCK-8 stimulated rapid PKC-delta TYR-P by activation of the low affinity CCK(A) receptor state. TPA had a similar effect. BAPTA did not decrease CCK-stimulated PKC-delta TYR-P but instead, increased it. A23187 did not stimulate PKC-delta TYR-P. Wortmannin and LY 294002 did not alter CCK-stimulated PKC-delta TYR-P. GF 109203X, at low concentrations, increased PKC-delta TYR-P stimulated by CCK or TPA and at higher concentrations, inhibited it. The cPKC inhibitors, G? 6976 and safingol, caused a similar increase in TPA- and CCK-stimulated PKC-delta TYR-P. These results demonstrate that CCK(A) receptor activation causes PKC-delta TYR-P through activation of only one of its two receptor affinity states. This PKC-delta TYR-P is not directly influenced by changes in [Ca(2+)](i); however, the resultant activation of PKC-alpha has an inhibitory effect. Therefore, CCK activates both stimulatory and inhibitory PKC cascades regulating PKC-delta TYR-P and, hence, likely plays an important role in regulating PKC-delta degradation and cellular abundance.  相似文献   

11.
The exocyst complex tethers vesicles at sites of fusion through interactions with small GTPases. The G protein RalA resides on Glut4 vesicles, and binds to the exocyst after activation by insulin, but must then disengage to ensure continuous exocytosis. Here we report that, after recognition of the exocyst by activated RalA, disengagement occurs through phosphorylation of its effector Sec5, rather than RalA inactivation. Sec5 undergoes phosphorylation in the G-protein binding domain, allosterically reducing RalA interaction. The phosphorylation event is catalysed by protein kinase C and is reversed by an exocyst-associated phosphatase. Introduction of Sec5 bearing mutations of the phosphorylation site to either alanine or aspartate disrupts insulin-stimulated Glut4 exocytosis, as well as other trafficking processes in polarized epithelial cells and during development of zebrafish embryos. The exocyst thus serves as a 'gatekeeper' for exocytic vesicles through a circuit of engagement, disengagement and re-engagement with G proteins.  相似文献   

12.
APP processing is regulated by cytoplasmic phosphorylation   总被引:14,自引:0,他引:14       下载免费PDF全文
Amyloid-beta peptide (Abeta) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the beta-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by alpha-secretase. The production of Abeta is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Abeta generation.  相似文献   

13.
Platelet-derived growth factor (PDGF) stimulated the tyrosine phosphorylation of the GTPase activating protein (GAP) in 3T3 cells and in CHO cells expressing wild-type PDGF receptors, but not in several CHO cell lines expressing mutant receptors defective in transmitting mitogenic signals. Following PDGF treatment of cells, GAP physically associated with the PDGF receptor and with Raf-1, phospholipase c-gamma, and PI-3 kinase, suggesting that PDGF induced the formation of complexes of signaling molecules. The association of GAP with the PDGF receptor and the phosphorylation of GAP with the PDGF receptor and the phosphorylation of GAP were reconstituted in vitro using purified protein and in insect cells expressing murine PDGF receptor and human GAP. However, in cells transformed by activated c-Ha-ras, which are defective in certain responses to PDGF, GAP failed to associate with the PDGF receptor or increase its phosphotyrosine content in response to PDGF. The association of GAP with ligand-activated PDGF receptors may directly link PDGF and ras signaling pathways.  相似文献   

14.
Capacitation represents the final maturational steps that render mammalian sperm competent to fertilize, either in vivo or in vitro. Capacitation is defined as a series of events that enables sperm to bind the oocyte and undergo the acrosome reaction in response to the zona pellucida. Although the molecular mechanisms involved are not fully understood, sperm protein phosphorylation is associated with capacitation. The hypothesis of this study is that protein tyrosine phosphorylation and kinase activity mediate capacitation of porcine sperm. Fresh sperm were incubated in noncapacitating or capacitating media for various times. Proteins were extracted with SDS, subjected to SDS-PAGE, and immunoblotted with an antiphosphotyrosine antibody. An M(r) 32 000 tyrosine-phosphorylated protein (designated as p32) appeared only when the sperm were incubated in capacitating medium and concomitant with capacitation as assessed by the ionophore-induced acrosome reaction. The p32 was soluble in Triton X-100. Fractionation of sperm proteins with Triton X-114 demonstrated that after capacitation, this tyrosine phosphoprotein is located in both the cytosol and the membrane. Enzyme renaturation of sperm proteins was conducted in gels with or without either poly glu:tyr (a tyrosine kinase substrate) or kemptide (a protein kinase A substrate). An M(r) 32 000 enzyme with kinase behavior was observed in all gels but was preferentially phosphorylated on tyrosine, as assessed by phosphorimagery and by thin layer chromotography to identify the phosphoamino acids. Indirect immunolocalization showed that the phosphotyrosine residues redistribute to the acrosome during capacitation, which is an appropriate location for a protein involved in the acquisition of fertility.  相似文献   

15.
A vacuole membrane-associated calcium-binding protein with an apparent mass of 45 kD was purified from celery (Apium graveolens). This protein, VCaB45, is enriched in highly vacuolate tissues and is located within the lumen of vacuoles. Antigenically related proteins are present in many dicotyledonous plants. VCaB45 contains significant amino acid identity with the dehydrin family signature motif, is antigenically related to dehydrins, and has a variety of biochemical properties similar to dehydrins. VCaB45 migrates anomalously in sodium dodecyl sulfate-polyacrylamide gel electrophoresis having an apparent molecular mass of 45 kD. The true mass as determined by matrix-assisted laser-desorption ionization time of flight was 16.45 kD. VCaB45 has two characteristic dissociation constants for calcium of 0.22 +/- 0.142 mM and 0.64 +/- 0.08 mM, and has an estimated 24.7 +/- 11.7 calcium-binding sites per protein. The calcium-binding properties of VCaB45 are modulated by phosphorylation; the phosphorylated protein binds up to 100-fold more calcium than the dephosphorylated protein. VCaB45 is an "in vitro" substrate of casein kinase II (a ubiquitous eukaryotic kinase), the phosphorylation resulting in a partial activation of calcium-binding activity. The vacuole localization, calcium binding, and phosphorylation of VCaB45 suggest potential functions.  相似文献   

16.
A J Garton  N K Tonks 《The EMBO journal》1994,13(16):3763-3771
The protein tyrosine phosphatase PTP-PEST is an 88 kDa cytosolic enzyme which is ubiquitously expressed in mammalian tissues. We have expressed PTP-PEST using recombinant baculovirus, and purified the protein essentially to homogeneity in order to investigate phosphorylation as a potential mechanism of regulation of the enzyme. PTP-PEST is phosphorylated in vitro by both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) at two major sites, which we have identified as Ser39 and Ser435. PTP-PEST is also phosphorylated on both Ser39 and Ser435 following treatment of intact HeLa cells with TPA, forskolin or isobutyl methyl xanthine (IBMX). Phosphorylation of Ser39 in vitro decreases the activity of PTP-PEST by reducing its affinity for substrate. In addition, PTP-PEST immunoprecipitated from TPA-treated cells displayed significantly lower PTP activity than enzyme obtained from untreated cells. Our results suggest that both PKC and PKA are capable of phosphorylating, and therefore inhibiting, PTP-PEST in vivo, offering a mechanism whereby signal transduction pathways acting through either PKA or PKC may directly influence cellular processes involving reversible tyrosine phosphorylation.  相似文献   

17.
18.
RhoE function is regulated by ROCK I-mediated phosphorylation   总被引:7,自引:0,他引:7       下载免费PDF全文
The Rho GTPase family member RhoE regulates actin filaments partly by binding to and inhibiting ROCK I, a serine/threonine kinase that induces actomyosin contractility. Here, we show that ROCK I can phosphorylate multiple residues on RhoE in vitro. In cells, ROCK I-phosphorylated RhoE localizes in the cytosol, whereas unphosphorylated RhoE is primarily associated with membranes. Phosphorylation has no effect on RhoE binding to ROCK I, but instead increases RhoE protein stability. Using phospho-specific antibodies, we show that ROCK phosphorylates endogenous RhoE at serine 11 upon cell stimulation with platelet-derived growth factor, and that this phosphorylation requires an active protein kinase C signalling pathway. In addition, we demonstrate that phosphorylation of RhoE correlates with its activity in inducing stress fibre disruption and inhibiting Ras-induced transformation. This is the first demonstration of an endogenous Rho family member being phosphorylated in vivo and indicates that phosphorylation is an important mechanism to control the stability and function of this GTPase-deficient Rho protein.  相似文献   

19.
Filamentous smooth muscle myosin is regulated by phosphorylation   总被引:3,自引:6,他引:3       下载免费PDF全文
《The Journal of cell biology》1989,109(6):2887-2894
The enzymatic activity of filamentous dephosphorylated smooth muscle myosin has been difficult to determine because the polymer disassembles to the folded conformation in the presence of MgATP. Monoclonal antirod antibodies were used here to "fix" dephosphorylated myosin in the filamentous state. The steady-state actin-activated ATPase of phosphorylated filaments was 30-100-fold higher than that of antibody- stabilized dephosphorylated filaments, suggesting that phosphorylation can activate ATPase activity independent of changes in assembly. The degree of regulation may exceed 100-fold, because steady-state measurements slightly overestimate the rate of product release from dephosphorylated filaments. Single-turnover experiments in the absence of actin showed that although dephosphorylated folded myosin released products at the low rate of 0.0005 s-1 (Cross, R. A., K. E. Cross, A. Sobieszek. 1986. EMBO [Eur. Mol. Biol. Organ.] J. 5:2637-2641) the rate of product release from dephosphorylated filaments was only 3-12-fold higher, depending on the ionic strength. The addition of actin did not increase this rate to any appreciable extent. Dephosphorylated filaments and dephosphorylated heavy meromyosin (Sellers, J. R. 1985. J. Biol. Chem. 260:15815-15819) thus have similar low rates of phosphate release both in the presence and absence of actin. These results show that light chain phosphorylation alone, without invoking other mechanisms, is an effective switch for regulating the activity of smooth muscle myosin filaments.  相似文献   

20.
Long chain acyl CoA synthetase 4 (Acsl4) is a key enzyme in steroidogenesis. It participates in steroid synthesis through of arachidonic acid release and Steroidogenic Acute Regulatory protein (StAR) induction.Acsl4 prefers arachidonic acid as substrate and acts probably as a homodimer. In steroidogenic cells, it has been demonstrated that Acsl4 is a high turnover protein located mainly in mitochondrial-associated membrane fraction (MAM) bound to other proteins and that it is newly synthesized by hormone stimulation. The synthesis of Acsl4 constitutes an early step in steroidogenesis.In the steroid synthesis process, activation of kinases plays a very important role. For this reason, the aim of this work was to study Acsl4 as a possible phosphoprotein and try to elucidate the role of its phosphorylation.We have determined for the first time that Acsl4 is a phosphoprotein whose phosphorylation is hormone-dependent. We also demonstrated that Acsl4 acts effectively as a dimer and that phosphorylation occurs after dimer formation.Studies in vitro demonstrated that Acsl4 is a substrate of both PKA and PKC and its phosphorylation by these kinases regulates its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号