首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates G protein-coupled receptor signaling via agonist-induced receptor phosphorylation and desensitization. GRK2 can also modulate cellular activation by interacting with downstream signaling molecules. The intracellular GRK2 level changes during inflammatory conditions. We investigated how IL-1β-induced changes in endogenous GRK2 expression influence chemokine receptor signaling in primary astrocytes. Culturing astrocytes with IL-1β for 24 h induced a 2–3-fold increase in GRK2 and decreased C–C chemokine ligand 2 (CCL2)-induced ERK1/2 activation. Conversely, the 45% decrease in GRK2 expression in astrocytes from GRK2+/− animals resulted in a more pronounced CCL2-induced ERK1/2 phosphorylation. Increased GRK2 inhibited CCL2-induced Akt phosphorylation at Thr308 and Ser473 as well as pPDK-1 translocation. In contrast, altered GRK2 levels did not change the CCL2-induced increase in intracellular calcium or MEK1/2 phosphorylation. These data suggest that altered GRK2 expression modulates chemokine signaling downstream of the receptor. We found that GRK2 kinase activity was not required to decrease chemokine-induced ERK1/2 phosphorylation, whereas regulation of CCL2-induced Akt phosphorylation did require an active GRK2 kinase domain. Collectively, these data suggest that changes in endogenous GRK2 expression in primary astrocytes regulate chemokine receptor signaling to ERK1/2 and to PDK-1-Akt downstream of receptor coupling via kinase-dependent and kinase-independent mechanisms, respectively.  相似文献   

2.
In gastrointestinal smooth muscle cells, VPAC(2) receptor desensitization is exclusively mediated by G protein-coupled receptor kinase 2 (GRK2). The present study examined the mechanisms by which acetylcholine (ACh) acting via M(3) receptors regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. Vasoactive intestinal peptide induced VPAC(2) receptor phosphorylation, internalization, and desensitization in both freshly dispersed and cultured smooth muscle cells. Costimulation with ACh in the presence of M(2) receptor antagonist (i.e., activation of M(3) receptors) inhibited VPAC(2) receptor phosphorylation, internalization, and desensitization. Inhibition was blocked by the selective protein kinase C (PKC) inhibitor bisindolylmaleimide, suggesting that the inhibition was mediated by PKC, derived from M(3) receptor activation. Similar results were obtained by direct activation of PKC with phorbol myristate acetate. In the presence of the M(2) receptor antagonist, ACh induced phosphorylation of Raf kinase inhibitory protein (RKIP), increased RKIP-GRK2 association, decreased RKIP-Raf-1 association, and stimulated ERK1/2 activity, suggesting that, upon phosphorylation by PKC, RKIP dissociates from its known target Raf to associate with, and block the activity of, GRK2. In muscle cells expressing RKIP(S153A), which lacks the PKC phosphorylation site, RKIP phosphorylation was blocked and the inhibitory effect of ACh on VPAC(2) receptor phosphorylation, internalization, and desensitization and the stimulatory effect on ERK1/2 activation were abolished. This study identified a novel mechanism of cross-regulation of G(s)-coupled receptor phosphorylation and internalization by G(q)-coupled receptors. The mechanism involved phosphorylation of RKIP by PKC, switching RKIP from association with Raf-1 to association with, and inhibition of, GRK2.  相似文献   

3.
Liu F  He K  Yang X  Xu N  Liang Z  Xu M  Zhao X  Han Q  Zhang Y 《PloS one》2011,6(6):e21520
G protein-coupled receptors (GPCRs) activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A)-adrenergic receptor (α(1A)-AR)-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Agonist-mediated endocytic traffic of α(1A)-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A). α(1A)-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A)-AR. α(1A)-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent). Activation of protein kinase C (PKC) and C-Raf by α(1A)-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor) and Ro 31-8220 (a PKC inhibitor) inhibited α(1B)-AR- but not α(1A)-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A)-AR-induced ERK1/2 activation, which is independent of G(q)/PLC/PKC signaling.  相似文献   

4.
The receptor for gonadotropin-releasing hormone (GnRH) belongs to the G protein-coupled receptors (GPCRs), and its stimulation activates extracellular signal-regulated protein kinase (ERK). We found that the transactivation of ErbB4 was involved in GnRH-induced ERK activation in immortalized GnRH neurons (GT1–7 cells). We found also that GnRH induced the cleavage of ErbB4. In the present study, we examined signal transduction for the activation of ERK and the cleavage of ErbB4 after GnRH treatment. Both ERK activation and ErbB4 cleavage were completely inhibited by YM-254890, an inhibitor of Gq/11 proteins. Down-regulation of protein kinase C (PKC) markedly decreased both ERK activation and ErbB4 cleavage. Experiments with two types of PKC inhibitors, Gö 6976 and bisindolylmaleimide I, indicated that novel PKC isoforms but not conventional PKC isoforms were involved in ERK activation and ErbB4 cleavage. Our experiments indicated that the novel PKC isoforms activated protein kinase D (PKD) after GnRH treatment. Knockdown and inhibitor experiments suggested that PKD1 stimulated the phosphorylation of Pyk2 by constitutively activated Src and Fyn for ERK activation. Taken together, it is highly possible that PKD1 plays a critical role in signal transduction from the PKC pathway to the tyrosine kinase pathway. Activation of the tyrosine kinase pathway may be involved in the progression of cancer.  相似文献   

5.
Hepatocyte growth factor (HGF) is critical for triggering metastasis of hepatocellular carcinoma cell (HCC). Extracellular signal-regulated kinase (ERK) mediates HGF-induced cell migration via focal adhesion signaling. Protein kinase C (PKC) is a negative regulator of ERK activation, however, both PKC and ERK were required for HGF-induced cell migration. To address this intriguing issue, the signal mechanisms for HGF-induced HepG2 cell migration were investigated in a long-term fashion. HGF-induced phosphorylations of ERK, Src (at Tyr 416) and paxillin (at Ser178 and Tyr31) were up and down for 3 times within 24 h. HGF also induced fluctuant PKC activation and Rac degradation. Consistently, HGF induced intermittent actin polarization within 24 h, which can be blocked by the inhibitors of PKC (Bisindolymaleimide) and ERK. Inhibitor studies revealed that ERK was required for HGF-induced paxillin phosphorylation at Ser178, whereas PKC and Rac-1 may suppress HGF-induced phosphorylation of ERK and paxillin (at Ser178) and upregulate phosphorylation of paxillin at Tyr31. Based on shRNA technique, PKCα and δ were responsible for suppressing HGF-induced phosphorylation of ERK and paxillin (at Ser178), whereas PKC ε and ζ were required for phosphorylation of paxillin at Tyr31. The HGF-induced fluctuant signaling is reminiscent of c-Met endocytosis. Using Concanavalin A, an inhibitor of endocytosis, we found that c-Met endocytosis was required for PKC to suppress ERK phosphorylation. Moreover, HGF-induced c-Met degradation was also fluctuant, which can be prevented by Bisindolymaleimide. In conclusion, PKC is critical for mediating HGF-induced fluctuant ERK-paxillin signaling during cell migration, probably via triggering endosomal degradation of c-Met.  相似文献   

6.
Desensitization of G-protein-coupled receptors may involve phosphorylation of serine and threonine residues. The leukotriene B(4) (LTB(4)) receptor (BLT1) contains 14 intracellular serines and threonines, 8 of which are part of consensus target sequences for protein kinase C (PKC) or casein kinase 2. In this study, we investigated the importance of PKC and GPCR-specific kinase (GRK) phosphorylation in BLT1 desensitization. Pretreatment of BLT1-transfected COS-7 cells with PKC activators caused a decrease of LTB(4)-induced inositol phosphate (IP) accumulation. This reduction was prevented with the PKC inhibitor, staurosporine, and not observed in cells expressing a BLT1 deletion mutant (G291stop) lacking the cytoplasmic tail. Moreover LTB(4)-induced IP accumulation was significantly inhibited by overexpression of GRK2, GRK5, and especially GRK6, in cells expressing wild type BLT1 but not in those expressing G291stop. GRK6-mediated desensitization correlated with increased phosphorylation of BLT1. The G319stop truncated BLT1 mutant displayed functional characteristics comparable with wild type BLT1 in terms of desensitization by GRK6, but not by PKC. Substitution of Thr(308) within a putative casein kinase 2 site to proline or alanine in the full-length BLT1 receptor prevented most of GRK6-mediated inhibition of LTB(4)-induced IP production but only partially affected LTB(4)-induced BLT1 phosphorylation. Our findings thus suggest that Thr(308) is a major residue involved in GRK6-mediated desensitization of BLT1 signaling.  相似文献   

7.
Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.  相似文献   

8.
The novel small molecule ingenol 3-angelate (PEP005) has been shown previously to induce apoptosis in leukaemic cell lines and primary AML cells, an effect that requires the expression of protein kinase C-delta (PKCδ). Here we have investigated signalling events downstream of PKCδ that determine sensitivity of AML cells to PEP005. We show that activation of ERK1/2 MAP kinase occurred in both sensitive and resistant cells and that induction of apoptosis required sustained signalling through the ERK1/2 pathway. Inhibition of ERK1/2 signalling using the MEK inhibitor PD98059 inhibited PEP005-induced apoptosis and activation of ERK1/2 was shown to occur downstream of PKC activation. The data show that PEP005-induced apoptosis is both PKC and ERK1/2 dependent and indicate that chronic activation of ERK1/2 in leukaemic cells delivers a pro-apoptotic rather than a proliferative or survival signal.  相似文献   

9.
Epidermal growth factor (EGF) receptor stimulation or protein kinase C (PKC) activation enhances corneal epithelial cell proliferation. This response is needed to maintain corneal transparency and vision. We clarify here in human corneal epithelial cells (HCEC) the cause and effect relationships between ERK1/2 and NKCC1 phosphorylation induced by EGF receptor or PKC activation. Furthermore, the roles are evaluated of NF-κB and ERK1/2 in mediating negative feedback control of ERK1/2 and NKCC1 phosphorylation through modulating DUSP1 and DUSP6 expression levels. Intracellular Ca(2+) rises induced by EGF elicited NKCC1 phosphorylation through ERK1/2 activation. Bumetanide suppressed EGF-induced NKCC1 phosphorylation, transient cell swelling and cell proliferation. This cause and effect relationship is similar to that induced by PKC stimulation. NKCC1 activation occurred through time-dependent increases in protein-protein interaction between ERK1/2 and NKCC1, which were proportional to EGF concentration. DUSP6 upregulation obviated EGF and PKC-induced NKCC1 phosphorylation. NF-κB inhibition by PDTC prolonged ERK1/2 activation through GSK-3 inactivation leading to declines in DUSP1 expression levels. These results show that EGF receptor and PKC activation induce increases in HCEC proliferation through ERK1/2 interaction with NKCC1. This response is modulated by changes in DUSP1- and DUSP6-mediated negative feedback control of ERK1/2-induced NKCC1 phosphorylation.  相似文献   

10.
Glycogen synthase kinase-3 (GSK-3) modulates a wide array of cellular processes, including embryonic development, cell differentiation, survival, and apoptosis. Recently, it was reported that a GSK-3 inhibitor attenuates lipopolysaccharide (LPS)-induced septic shock and regulates the mortality of endotoxemic mice. However, the detailed mechanism of reduced mortality via GSK-3 inhibition is not well defined. Herein, we showed that GSK-3 inhibition induces extracellular signal-regulated kinase 1/2 (ERK1/2) activation under LPS-stressed conditions via protein kinase C δ (PKCδ) activation. Furthermore, PKCδ-induced ERK1/2 activation by the inhibition of GSK-3 provoked the production of interleukin (IL)-10, playing a crucial role in regulating endotoxemia. Using a mitogen-activated protein kinase kinase-1 (MEK-1) and PKCδ inhibitor, we confirmed that GSK-3 inhibition induces PKCδ and subsequent ERK1/2 activation, resulting in increased IL-10 expression under LPS-treated conditions. We verified that septic shock caused by LPS is attenuated by GSK-3 inhibition using a GSK-3 inhibitor. This relieved endotoxemia induced by GSK-3 inhibition was restored in an ERK1/2-dependent manner. Taken together, IL-10 expression produced by GSK-3 inhibition-induced ERK1/2 activation via PKCδ relieved LPS-mediated endotoxemia. This finding suggests that IL-10 hyperexpression resulting from GSK-3 inhibition-induced ERK activation could be a new therapeutic pathway for endotoxemia.  相似文献   

11.
Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway   总被引:6,自引:0,他引:6  
Homocysteine (Hcy) induces matrix metalloproteinase (MMP)-9 in microvascular endothelial cells (MVECs). We hypothesized that the ERK1/2 signaling pathway is involved in Hcy-mediated MMP-9 expression. In cultured MVECs, Hcy induced activation of ERK, which was blocked by PD-98059 and U0126 (MEK inhibitors). Pretreatment with BAPTA-AM, staurosporine (PKC inhibitor), or Gö6976 (specific inhibitor for Ca2+-dependent PKC) abrogated ERK phosphorylation, suggesting the role of Ca2+ and Ca2+-dependent PKC in Hcy-induced ERK activation. ERK phosphorylation was suppressed by pertussis toxin (PTX), suggesting the involvement of G protein-coupled receptors (GPCRs) in initiating signal transduction by Hcy and leading to ERK activation. Pretreatment of MVECs with genistein, BAPTA-AM, or thapsigargin abrogated Hcy-induced ERK activation, suggesting the involvement of the PTK pathway in Hcy-induced ERK activation, which was mediated by intracellular Ca2+ pool depletion. ERK activation was attenuated by preincubation with N-acetylcysteine (NAC) and SOD, suggesting the role of oxidation in Hcy-induced ERK activation. Pretreatment with an ERK1/2 blocker (PD-98059), staurosporine, folate, or NAC modulated Hcy-induced MMP-9 activation as measured using zymography. Our results provide evidence that Hcy triggers the PTX-sensitive ERK1/2 signaling pathway, which is involved in the regulation of MMP-9 in MVECs. calcium signaling; protein kinase C; Src; G protein-coupled receptor; nonreceptor tyrosine kinase; protein Gi; protein Gq; protein tyrosine kinase 2; microvascular endothelial cell; cardiovascular remodeling  相似文献   

12.
In diabetic states, hyperinsulinemia may negatively regulate Akt/endothelial nitric oxide synthase (eNOS) activation. Our main aim was to investigate whether and how insulin might negatively regulate Akt/eNOS activities via G protein-coupled receptor kinase 2 (GRK2) in aortas from ob/ob mice. Endothelium-dependent relaxation was measured in aortic rings from ob/ob mice (a type 2 diabetes model). GRK2, β-arrestin2, and Akt/eNOS signaling-pathway protein levels and activities were mainly assayed by Western blotting. Plasma insulin was significantly elevated in ob/ob mice. Insulin-induced relaxation was significantly decreased in the ob/ob aortas [vs. age-matched control (lean) ones]. The response in ob/ob aortas was enhanced by PKC inhibitor or GRK2 inhibitor. Akt (at Thr(308)) phosphorylation and eNOS (at Ser(1177)) phosphorylation, and also the β-arrestin2 protein level, were markedly decreased in the membrane fraction of insulin-stimulated ob/ob aortas (vs. insulin-stimulated lean ones). These membrane-fraction expressions were enhanced by GRK2 inhibitor and by PKC inhibitor in the ob/ob group but not in the lean group. PKC activity was much greater in ob/ob than in lean aortas. GRK2 protein and activity levels were increased in ob/ob and were greatly reduced by GRK2 inhibitor or PKC inhibitor pretreatment. These results suggest that in the aorta in diabetic mice with hyperinsulinemia an upregulation of GRK2 and a decrease in β-arrestin2 inhibit insulin-induced stimulation of the Akt/eNOS pathway and that GRK2 overactivation may result from an increase in PKC activity.  相似文献   

13.
In most target tissues, the adenylyl cyclase/cAMP/PKA, the extracellular signal regulated kinase and the protein kinase B/Akt are the main pathways employed by the type 2 corticotropin-releasing hormone receptor to mediate the biological actions of urocortins (Ucns) and CRH. To decipher the molecular determinants of CRH-R2 signaling, we studied the signaling pathways in HEK293 cells overexpressing recombinant human CRH-R2β receptors. Use of specific kinase inhibitors showed that the CRH-R2β cognate agonist, Ucn 2, activated extracellular signal regulated kinase in a phosphoinositide 3-kinase and cyclic adenosine monophosphate/PKA-dependent manner with contribution from Epac activation. Ucn 2 also induced PKA-dependent association between AKAP250 and CRH-R2β that appeared to be necessary for extracellular signal regulated kinase activation. PKB/Akt activation was also mediated via pertussis toxin-sensitive G-proteins and PI3-K activation but did not require cAMP/PKA, Epac or protein kinase C for optimal activation. Potential feedback mechanisms that target the CRH-R2β itself and modulate receptor trafficking and endocytosis were also investigated. Indeed, our results suggested that inhibition of either PKA or extracellular signal regulated kinase pathway accelerates CRH-R2β endocytosis. Furthermore, Ucn 2-activated extracellular signal regulated kinase appeared to target β-arrestin1 and modulate, through phosphorylation at Ser412, β-arrestin1 translocation to the plasma membrane and CRH-R2β internalization kinetics. Loss of this “negative feedback” mechanism through inhibition of the extracellular signal regulated kinase activity resulted in significant attenuation of Ucn 2-induced cAMP response, whereas Akt phosphorylation was not affected by altered receptor endocytosis. These findings reveal a complex interplay between the signaling molecules that allow “fine-tuning” of CRH-R2β functional responses and regulate signal integration.  相似文献   

14.
Recent studies have provided evidence that Zn2+ plays a crucial role in ischemia- and seizure-induced neuronal death. However, the intracellular signaling pathways involved in Zn2+-induced cell death are largely unknown. In the present study, we investigated the roles of mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK), and of reactive oxygen species (ROS) in Zn2+-induced cell death using differentiated PC12 cells. Intracellular accumulation of Zn2+ induced by the combined application of pyrithione (5 microM), a Zn2+ ionophore, and Zn2+ (10 microM) caused cell death and activated JNK and ERK, but not p38 MAPK. Preventing JNK activation by the expression of dominant negative SEK1 (SEKAL) did not attenuate Zn2+-induced cell death, whereas the inhibition of ERK with PD98059 and the expression of dominant negative Ras mutant (RasN17) significantly prevented cell death. Inhibition of protein kinase C (PKC) and phosphatidylinositol-3 kinase had little effect on Zn2+-induced ERK activation. Intracellular Zn2+ accumulation resulted in the generation of ROS, and antioxidants prevented both the ERK activation and the cell death induced by Zn2+. Therefore, we conclude that although Zn2+ activates JNK and ERK, only ERK contributes to Zn2+-induced cell death, and that ERK activation is mediated by ROS via the Ras/Raf/MEK/ERK signaling pathway.  相似文献   

15.
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.  相似文献   

16.
Carbachol (Cch), a muscarinic acetylcholine receptors (mAChR) agonist, produces time- and dose-dependent increases in mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in nondifferentiated Fischer rat thyroid (FRT) epithelial cells. Cells pretreatment with the selective phospholipase C inhibitor U73122 resulted in a decrease of Cch-stimulated ERK1/2 phosphorylation. These data indicated that the effect of mAChR on ERK activation could be mediated through agonist-induced Ca(2+) mobilization or PKC activation. Phosphorylation of ERK1/2 was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate acetate (PMA), but was not altered either by PKC inhibitor GF109203X or by down-regulation of PKC. Phosphorylation of ERK1/2 was elevated by a direct [Ca(2+)](i) increase caused by thapsigargin or ionophore. Additionally, Cch-induced ERK1/2 phosphorylation was reduced after either inhibition of Ca(2+) influx or intracellular Ca(2+) release. Nevertheless, Cch-mediated ERK1/2 activation was genistein sensitive, indicating the involvement of protein tyrosine kinases on the downstream signalling of mAChR. Pretreatment of the cells with PP2 markedly decreased Cch-induced ERK1/2 phosphorylation, suggesting a role of Src family of tyrosine kinases in the signal transduction pathway involved in ERK1/2 activation by mAChR. To test the biological consequences of ERK activation, we examined the effect of mAChR on cell functions. Cch stimulation of FRT cells did not affect cell proliferation, but increased protein synthesis. This effect was significantly attenuated by PD98059, a selective inhibitor of mitogen-activated protein kinase kinase (MAPKK/MEK). This study demonstrated that muscarinic receptor-mediated increase in the ERK1/2 phosphorylation was dependent on [Ca(2+)](i) but independent of PKC and was mediated by the Src family of tyrosine kinases. Our results also supported the idea that the protein synthesis stimulated by mAChR in polarized FRT epithelial cells was regulated by the ERK1/2 phosphorylation pathway.  相似文献   

17.
Thrombin signalling through PAR (protease-activated receptor)-1 is involved in cellular processes, such as proliferation, differentiation and cell survival. Following traumatic injury to the eye, thrombin signalling may participate in disorders, such as PVR (proliferative vitreoretinopathy), a human eye disease characterized by the uncontrolled proliferation, transdifferentiation and migration of otherwise quiescent RPE (retinal pigment epithelium) cells. PARs activate the Ras/Raf/MEK/ERK MAPK pathway (where ERK is extracellular-signal-regulated kinase, MAPK is mitogen-activated protein kinase and MEK is MAPK/ERK kinase) through the activation of G(alpha) and G(betagamma) heterotrimeric G-proteins, and the downstream stimulation of the PLC (phospholipase C)-beta/PKC (protein kinase C) and PI3K (phosphoinositide 3-kinase) signalling axis. In the present study, we examined the molecular signalling involved in thrombin-induced RPE cell proliferation, using rat RPE cells in culture as a model system for PVR pathogenesis. Our results showed that thrombin activation of PAR-1 induces RPE cell proliferation through Ras-independent activation of the Raf/MEK/ERK1/2 MAPK signalling cascade. Pharmacological analysis revealed that the activation of 'conventional' PKC isoforms is essential for proliferation, although thrombin-induced phosphorylation of ERK1/2 requires the activation of atypical PKCzeta by PI3K. Consistently, thrombin-induced ERK1/2 activation and RPE cell proliferation were prevented completely by PI3K or PKCzeta inhibition. These results suggest that thrombin induces RPE cell proliferation by joint activation of PLC-dependent and atypical PKC isoforms and the Ras-independent downstream stimulation of the Raf/MEK/ERK1/2 MAPK cascade. The present study is the first report demonstrating directly thrombin-induced ERK phosphorylation in the RPE, and the involvement of atypical PKCzeta in this process.  相似文献   

18.
19.
20.
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by G?6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G?6976 and PD098059, or G?6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G?6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号