首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cdc20, an activator of the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase, initiates the destruction of key mitotic regulators to facilitate mitosis, while it is negatively regulated by the spindle assembly checkpoint (SAC) to prevent premature anaphase entry. Activation of the p38 mitogen‐activated protein kinase could contribute to mitotic arrest, but the underlying mechanism is unknown. Here we report a novel pathway in which the p38 signaling triggers Cdc20 destruction under SAC elicited by cadmium, a human carcinogen. We found that the cadmium‐induced prometaphase arrest was linked to decreased Cdc20 and accumulated cyclin A protein levels in human cells, whereas the activity of cyclin B1–Cdk1 was unaffected. The Cdc20 half‐life was markedly shortened along with its ubiquitination and degradation via 26S proteasome in cadmium‐treated asynchronous or G2‐enriched cells. Depletion of APC3 markedly suppressed the cadmium‐induced Cdc20 ubiquitination and proteolysis, while depletion of Cdh1, another activator of APC/C, did not. Intriguingly, blockage of p38 activity restored the Cdc20 levels for continuing mitosis under cadmium, while inhibition of JNK activity had no effect. The cadmium‐induced Cdc20 proteolysis was also suppressed during transient depletion of p38α or stable expression a dominant negative form of p38. Inhibition of p38 abolished the induction of Mad2–Cdc20–APC3 complex by cadmium. Moreover, forced expression of MKK6–p38 signaling could promote Cdc20 degradation in a Cdh1‐independent APC/C pathway. In summary, accelerated ubiquitination and proteolysis of Cdc20 is essential for prometaphase arrest that is mediated via the p38 signaling during SAC activation. J. Cell. Physiol. 223: 327–334, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase mediating targeted proteolysis through ubiquitination of protein substrates to control the progression of mitosis. The APC/C recognizes its substrates through two adapter proteins, Cdc20 and Cdh1, which contain similar C-terminal domains composed of seven WD-40 repeats believed to be involved in interacting with their substrates. During the transition from metaphase to anaphase, APC/C-Cdc20 mediates the ubiquitination of securin and cyclin B1, allowing the activation of separase and the onset of anaphase and mitotic exit. APC/C-Cdc20 and APC/C-Cdh1 have overlapping substrates. It is unclear whether they are redundant for mitosis. Using a gene-trapping approach, we have obtained mice which lack Cdc20 function. These mice show failed embryogenesis. The embryos were arrested in metaphase at the two-cell stage with high levels of cyclin B1, indicating an essential role of Cdc20 in mitosis that is not redundant with that of Cdh1. Interestingly, Cdc20 and securin double mutant embryos could not maintain the metaphase arrest, suggesting a role of securin in preventing mitotic exit.  相似文献   

3.
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The "destruction box" (D-box) of cyclin A is 10-20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.  相似文献   

4.
The spindle assembly checkpoint (SAC) delays progression into anaphase until all chromosomes have aligned on the metaphase plate by inhibiting Cdc20, the mitotic co‐activator of the APC/C. Mad2 and BubR1 bind and inhibit Cdc20, thereby forming the mitotic checkpoint complex (MCC), which can bind stably to the APC/C. Whether MCC formation per se is sufficient for a functional SAC or MCC association with the APC/C is required remains unclear. Here, we analyze the role of two conserved motifs in Cdc20, IR and C‐Box, in binding of the MCC to the APC/C. Mutants in both motifs assemble the MCC normally, but IR motif integrity is particularly important for stable binding to the APC/C. Cells expressing Cdc20 with a mutated IR motif have a compromised SAC, as uninhibited Cdc20 can compete with the MCC for APC/C binding and activate it. We thus show that stable MCC association with the APC/C is critical for a functional SAC.  相似文献   

5.
The spindle assembly checkpoint (SAC) is required to block sister chromatid separation until all chromosomes are properly attached to the mitotic apparatus. The SAC prevents cells from entering anaphase by inhibiting the ubiquitylation of cyclin B1 and securin by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The target of the SAC is the essential APC/C activator Cdc20. It is unclear how the SAC inactivates Cdc20 but most current models suggest that Cdc20 forms a stable complex with the Mad2 checkpoint protein. Here we show that most Cdc20 is not in a complex with Mad2; instead Mad2 is required for Cdc20 to form a complex with another checkpoint protein, BubR1. We further show that during the SAC, the APC/C ubiquitylates Cdc20 to target it for degradation. Thus, ubiquitylation of human Cdc20 is not required to release it from the checkpoint complex, but to degrade it to maintain mitotic arrest.  相似文献   

6.
The APC/C is an E3 ubiquitin ligase that, by targeting substrates for proteasomal degradation, plays a major role in cell cycle control. In complex with one of two WD40 activator proteins, Cdc20 or Cdh1, the APC/C is active from early mitosis through to late G1 and during this time targets many critical regulators of the cell cycle for degradation. However, this destruction is carefully ordered to ensure that cell cycle events are executed in a timely fashion. Recent studies have begun to shed light on how the APC/C selects different substrates at different times in the cell cycle. One particular problem is how the APC/C recognizes its first set of substrates, Nek2A and cyclin A, in early mitosis when, at this time, the spindle assembly checkpoint (SAC) inhibits most APC/C-dependent degradation. The answer may lie in how substrates are recruited to the APC/C. While checkpoint-dependent substrates appear to require Cdc20 for recruitment, experiments on the early mitotic substrate Nek2A demonstrate that it can bind the APC/C in the absence of Cdc20. The direct interaction of substrates with core subunits of the APC/C could allow their degradation to proceed unhindered even when the SAC is active.  相似文献   

7.
An essential aspect of progression through mitosis is the sequential degradation of key mitotic regulators in a process that is mediated by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase [1]. In mitotic cells, two forms of the APC/C exist, APC/C(Cdc20) and APC/C(Cdh1), which differ in their associated WD-repeat proteins (Cdc20 and Cdh1, respectively), time of activation, and substrate specificity [2, 3]. How the WD-repeat proteins contribute to APC/C's activation and substrate specificity is not clear. Many APC/C substrates contain a destruction box element that is necessary for their ubiquitination [4-6]. One such APC/C substrate, the budding yeast anaphase inhibitor Pds1 (securin), is degraded prior to anaphase initiation in a destruction box and APC/C(Cdc20)-dependent manner [3, 7]. Here we find that Pds1 interacts directly with Cdc20 and that this interaction requires Pds1's destruction box. Our results suggest that Cdc20 provides a link between the substrate and the core APC/C and that the destruction box is essential for efficient Cdc20-substrate interaction. We also find that Pds1 does not interact with Cdh1. Finally, the effect of spindle assembly checkpoint activation, known to inhibit APC/C function [8], on the Pds1-Cdc20 interaction is examined.  相似文献   

8.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 and Cdh1 leads to ubiquitin-dependent degradation of securin and cyclin B and thereby promotes the initiation of anaphase and exit from mitosis. Cyclin B and securin ubiquitination depend on a destruction box (D box) sequence in these proteins, but how APC/C bound to Cdc20 or Cdh1 recognizes the D box is poorly understood. By using site-specific photocrosslinking in combination with mutational analyses, we show that the D box directly interacts with an evolutionarily conserved surface on the predicted WD40 propeller structure of Cdh1 and that this interaction is essential for processive substrate ubiquitination. We further show that Cdh1 specifically crosslinks to the APC/C subunit Cdc27 and that Cdh1 binding to APC/C depends on the presence of Cdc27. Our data imply that APC/C is activated by the association of Cdh1 with Cdc27, which enables APC/C to recognize the D box of substrates via Cdh1's propeller domain.  相似文献   

9.
The anaphase promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that acts as a key regulator in the progression through mitosis (when mostly in complex with Cdc20) and as a stabilizer of the G1 phase (when in complex with Cdh1). Cdh1 is an activator of APC/C, and it has previously been reported that it is capable of mediating its own degradation during Go and G1. Herein, we show that the SCF complex (Skp1/Cul1/F-box protein/Roc1) intervenes in the surveillance of Cdh1 cellular abundance in S-phase.  相似文献   

10.
During mitosis, the Xenopus chromokinesin Kid (Xkid) provides the polar ejection forces needed at metaphase for chromosome congression, and its degradation is required at anaphase to induce chromosome segregation. Despite the fact that the degradation of Xkid at anaphase seems to be a key regulatory factor to induce chromosome movement to the poles, little is known about the mechanisms controlling this proteolysis. We investigated here the degradation pathway of Xkid. We demonstrate that Xkid is degraded both in vitro and in vivo by APC/Cdc20 and APC/Cdh1. We show that, despite the presence of five putative D-box motifs in its sequence, Xkid is proteolyzed in a D-box-independent manner. We identify a domain within the C terminus of this chromokinesin, with sequence GxEN, whose mutation completely stabilizes this protein by both APC/Cdc20 and APC/Cdh1. Moreover, we show that this degradation sequence acts as a transposable motif and induces the proteolysis of a GST-GXEN fusion protein. Finally, we demonstrate that both a D-box and a GXEN-containing peptides completely block APC-dependent degradation of cyclin B and Xkid, indicating that the GXEN domain might mediate the recognition and association of Xkid with the APC.  相似文献   

11.
Progress through mitosis requires that the right protein be degraded at the right time. One ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) targets most of the crucial mitotic regulators by changing its substrate specificity throughout mitosis. The spindle assembly checkpoint (SAC) acts on the APC/C co-activator, Cdc20 (cell division cycle 20), to block the degradation of metaphase substrates (for example, cyclin B1 and securin), but not others (for example, cyclin A). How this is achieved is unclear. Here we show that Cdc20 binds to different sites on the APC/C depending on the SAC. Cdc20 requires APC3 and APC8 to bind and activate the APC/C when the SAC is satisfied, but requires only APC8 to bind the APC/C when the SAC is active. Moreover, APC10 is crucial for the destruction of cyclin B1 and securin, but not cyclin A. We conclude that the SAC causes Cdc20 to bind to different sites on the APC/C and this alters APC/C substrate specificity.  相似文献   

12.
During mitosis, the spindle assembly checkpoint (SAC) inhibits the Cdc20-activated anaphase-promoting complex/cyclosome (APC/C(Cdc20)), which promotes protein degradation, and delays anaphase onset to ensure accurate chromosome segregation. However, the SAC function in meiotic anaphase regulation is poorly understood. Here, we examined the SAC function in fission yeast meiosis. As in mitosis, a SAC factor, Mad2, delayed anaphase onset via Slp1 (fission yeast Cdc20) when chromosomes attach to the spindle improperly. However, when the SAC delayed anaphase I, the interval between meiosis I and II shortened. Furthermore, anaphase onset was advanced and the SAC effect was reduced at meiosis II. The advancement of anaphase onset depended on a meiosis-specific, Cdc20-related factor, Fzr1/Mfr1, which contributed to anaphase cyclin decline and anaphase onset and was inefficiently inhibited by the SAC. Our findings show that impacts of SAC activation are not confined to a single division at meiosis due to meiosis-specific APC/C regulation, which has probably been evolved for execution of two meiotic divisions.  相似文献   

13.
Mammalian Cdh1/Fzr mediates its own degradation   总被引:4,自引:0,他引:4  
The Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase mediates degradation of cell cycle proteins during mitosis and G1. Cdc20/Fzy and Cdh1/Fzr are substrate-specific APC/C activators. The level of mammalian Cdh1 is high in mitosis, but it is inactive and does not bind the APC/C. We show that when Cdh1 is active in G1 and G0, its levels are considerably lower and almost all of it is APC/C associated. We demonstrate that Cdh1 is subject to APC/C-specific degradation in G1 and G0, and that this degradation depends upon two RXXL-type destruction boxes. We further demonstrate that addition of Cdh1 to Xenopus interphase extracts, which have an inactive APC/C, activates it to degrade Cdh1. These observations indicate that Cdh1 mediates its own degradation by activating the APC/C to degrade itself. Elevated levels of Cdh1 are deleterious for cell cycle progression in various organisms. This auto-regulation of Cdh1 could thus play a role in ensuring that the level of Cdh1 is reduced during G1 and G0, allowing it to be switched off at the correct time.  相似文献   

14.
The anaphase-promoting complex/cyclosome (APC/C) controls a variety of cellular processes through its ability to target numerous protein substrates for timely degradation. Substrate selection by this ubiquitin ligase depends on related activator proteins, Cdc20 and Cdh1, which bind and activate the APC/C at distinct cell cycle stages. Biochemical and structural studies revealed that Cdc20 and Cdh1 carry conserved receptor domains to recognize specific sequence motifs in substrates, such as D and KEN boxes. The mechanisms for ordered degradation of APC/C substrates, however, remain incompletely understood. Here we describe minimal degradation sequences (degrons) sufficient for rapid APC/C-Cdh1–specific in vivo degradation. The polo kinase Cdc5–derived degron contained an essential KEN motif, whereas a single RxxL-type D box was the relevant signal in the Cdc20-derived degradation domain, indicating that either motif may support specific recognition by Cdh1. In both degrons, the APC/C recognition motif was flanked by a nuclear localization sequence. Forced localization of the degron constructs revealed that proteolysis mediated by APC/C-Cdh1 is restricted to the nucleus and maximally active in the nucleoplasm. Levels of Iqg1, a cytoplasmic Cdh1 substrate, decreased detectably later than the nucleus-localized Cdh1 substrate Ase1, indicating that confinement to the nucleus may allow for temporal control of APC/C-Cdh1–mediated proteolysis.  相似文献   

15.
The anaphase promoting complex is a highly conserved E3 ligase complex that mediates the destruction of key regulatory proteins during both mitotic and meiotic divisions. In order to maintain ploidy, this destruction must occur after the regulatory proteins have executed their function. Thus, the regulation of APC/C activity itself is critical for maintaining ploidy during all types of cell divisions. During mitotic cell division, two conserved activator proteins called Cdc20 and Cdh1 are required for both APC/C activation and substrate selection. However, significantly less is known about how these proteins regulate APC/C activity during the specialized meiotic nuclear divisions. In addition, both budding yeast and flies utilize a third meiosis-specific activator. In Saccharomyces cerevisiae, this meiosis-specific activator is called Ama1. This review summarizes our knowledge of how Cdc20 and Ama1 coordinate APC/C activity to regulate the meiotic nuclear divisions in yeast.  相似文献   

16.
We have found that key mitotic regulators show distinct patterns of degradation during exit from mitosis in human cells. Using a live-cell assay for proteolysis, we show that two of these regulators, polo-like kinase 1 (Plk1) and Aurora A, are degraded at different times after the anaphase-promoting complex/cyclosome (APC/C) switches from binding Cdc20 to Cdh1. Therefore, events in addition to the switch from Cdc20 to Cdh1 control the proteolysis of APC/C(Cdh1) substrates in vivo. We have identified a putative destruction box in Plk1 that is required for degradation of Plk1 in anaphase, and have examined the effect of nondegradable Plk1 on mitotic exit. Our results show that Plk1 proteolysis contributes to the inactivation of Plk1 in anaphase, and that this is required for the proper control of mitotic exit and cytokinesis. Our experiments reveal a role for APC/C-mediated proteolysis in exit from mitosis in human cells.  相似文献   

17.
Mitotic progression is controlled by proteolytic destruction of securin and cyclin. The mitotic E3 ubiquitin ligase, known as the anaphase promoting complex or cyclosome (APC/C), in partnership with its activators Cdc20p and Cdh1p, targets these proteins for degradation. In the presence of defective kinetochore-microtubule interactions, APC/C(Cdc20) is inhibited by the spindle checkpoint, thereby delaying anaphase onset and providing more time for spindle assembly. Cdc20p interacts directly with Mad2p, and its levels are subject to careful regulation, but the precise mode(s) of APC/C( Cdc20) inhibition remain unclear. The mitotic checkpoint complex (MCC, consisting of Mad3p, Mad2p, Bub3p and Cdc20p in budding yeast) is a potent APC/C inhibitor. Here we focus on Mad3p and how it acts, in concert with Mad2p, to efficiently inhibit Cdc20p. We identify and analyse the function of two motifs in Mad3p, KEN30 and KEN296, which are conserved from yeast Mad3p to human BubR1. These KEN amino acid sequences resemble 'degron' signals that confer interaction with APC/C activators and target proteins for degradation. We show that both Mad3p KEN boxes are necessary for spindle checkpoint function. Mutation of KEN30 abolished MCC formation and stabilised Cdc20p in mitosis. In addition, mutation of Mad3-KEN30, APC/C subunits, or Cdh1p, stabilised Mad3p in G1, indicating that the N-terminal KEN box could be a Mad3p degron. To determine the significance of Mad3p turnover, we analysed the consequences of MAD3 overexpression and found that four-fold overproduction of Mad3p led to chromosome bi-orientation defects and significant chromosome loss during recovery from anti-microtubule drug induced checkpoint arrest. In conclusion, Mad3p KEN30 mediates interactions that regulate the proteolytic turnover of Cdc20p and Mad3p, and the levels of both of these proteins are critical for spindle checkpoint signaling and high fidelity chromosome segregation.  相似文献   

18.
The Anaphase Promoting Complex/Cyclosome (APC/C) in complex with its co‐activator Cdc20 is responsible for targeting proteins for ubiquitin‐mediated degradation during mitosis. The activity of APC/C–Cdc20 is inhibited during prometaphase by the Spindle Assembly Checkpoint (SAC) yet certain substrates escape this inhibition. Nek2A degradation during prometaphase depends on direct binding of Nek2A to the APC/C via a C‐terminal MR dipeptide but whether this motif alone is sufficient is not clear. Here, we identify Kif18A as a novel APC/C–Cdc20 substrate and show that Kif18A degradation depends on a C‐terminal LR motif. However in contrast to Nek2A, Kif18A is not degraded until anaphase showing that additional mechanisms contribute to Nek2A degradation. We find that dimerization via the leucine zipper, in combination with the MR motif, is required for stable Nek2A binding to and ubiquitination by the APC/C. Nek2A and the mitotic checkpoint complex (MCC) have an overlap in APC/C subunit requirements for binding and we propose that Nek2A binds with high affinity to apo‐APC/C and is degraded by the pool of Cdc20 that avoids inhibition by the SAC.  相似文献   

19.
Bäumer M  Braus GH  Irniger S 《FEBS letters》2000,468(2-3):142-148
Sister chromatid separation and mitotic exit are triggered by the anaphase-promoting complex (APC/C) which is a multi-subunit ubiquitin ligase required for proteolytic degradation of various target proteins. Cdc20 and Cdh1 are substrate-specific activators of the APC/C. It was previously proposed that Cdh1 is essential for proteolysis of the yeast mitotic cyclin Clb2. We show that Clb2 proteolysis is triggered by two different modes during mitosis. A fraction of Clb2 is degraded during anaphase in the absence of Cdh1. However, a second fraction of Clb2 remains stable during anaphase and is degraded in a Cdh1-dependent manner as cells exit from mitosis. Most of cyclin Clb3 is degraded independently of Cdh1. Our data imply that degradation of mitotic cyclins is initiated by a Cdh1-independent mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号