首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fifth component of the COP9 signalosome complex, Jab1/CSN5, directly binds to and induces specific down-regulation of the cyclin-dependent kinase inhibitor p27 (p27(Kip1)). Nuclear-cytoplasmic translocation plays an important role because leptomycin B (LMB), a chemical inhibitor of CRM1-dependent nuclear export, prevents p27 degradation mediated by Jab1/CSN5. Here we show that Jab1/CSN5 functions as an adaptor between p27 and CRM1 to induce nuclear export and subsequent degradation. Jab1/CSN5, but not p27, contains a typical leucine-rich nuclear export signal (NES) sequence conserved among different species, through which CRM1 bound to Jab1/CSN5 in an LMB-sensitive manner. Alteration of conserved leucine residues to alanine within Jab1/CSN5-NES abolished the interaction with CRM1 in vitro and impaired LMB-sensitive nuclear export and the ability to induce p27 breakdown in cultured cells. A Jab1/CSN5 truncation mutant lacking NES reversed p27 down-regulation induced by the full-length Jab1/CSN5, indicating that this mutant functions as a dominant negative (DN-Jab1). Introduction of DN-Jab1 into proliferating fibroblasts increased the level of p27 protein, thereby inducing growth arrest of the cells. Random mutagenesis analysis revealed that specific aspartic acid, leucine, and asparagine residues contained in the Jab1/CSN5-binding domain of p27 were required for interaction with Jab1/CSN5 and for down-regulation of p27. Glycerol gradient and cell fractionation experiments showed that at least two different forms of Jab1/CSN5-containing complexes existed within the cell. One is the conventional 450-kDa COP9 signalosome (CSN) complex located in the nucleus, and the other is much smaller (around 100-kDa), containing only a subset of CSN components (CSN4-8 but not CSN1-3), and mainly located in the cytoplasm. Treatment of cells with LMB greatly reduced the level of the smaller complex, suggesting that it originated from the CSN complex by nuclear export. Besides Jab1/CSN5, CSN3, -6, -7, and -8 were capable of inducing p27 down-regulation, when ectopically expressed. These results indicate that cytoplasmic shuttling regulated by Jab1/CSN5 and other CSN components may be a new pathway to control the intracellular abundance of the key cell cycle regulator.  相似文献   

2.
Psoriasis, a chronic immune-mediated inflammatory skin disease, is characterized by dysregulated keratinocyte proliferation. The EF-hand calcium binding protein S100A7 has been found to be overexpressed in psoriatic keratinocytes. It is know that S100A7 may interact with Jab1, a cofactor that stabilizes c-Jun. Jab1 is known to downregulate the expression of the cell cycle inhibitor p27Kip1 in some cancer models. In this study, we aimed to investigate the possible interaction between S100A7 and Jab1 and the downstream effects on p27 Kip1 expression in normal human keratinocyte cells transfected with S100A7 CRISPR activation plasmid and in archival psoriatic skin samples. Our results showed that the upregulated S100A7 colocalizes with Jab1 at the nuclear level in transfected cells and psoriatic skin samples. We also showed a differential protein expression of Jab1 between cytoplasmic and nuclear compartments, thus suggesting Jab1 translocation from nucleus to cytoplasm. p27 Kip1 protein expression patterns would imply a translocation from nucleus and a subsequent degradation of this protein. The upregulation of S1007 and its interaction with Jab1 would contribute to the p27 Kip1-dependent impaired proliferation that characterizes psoriatic skin.  相似文献   

3.
Ectopic expression of Jab1/CSN5 induces specific down-regulation of the cyclin-dependent kinase (Cdk) inhibitor p27 (p27(Kip1)) in a manner dependent upon transportation from the nucleus to the cytoplasm. Here we show that Grb2 and Grb3-3, the molecules functioning as an adaptor in the signal transduction pathway, specifically and directly bind to p27 in the cytoplasm and participate in the regulation of p27. The interaction requires the C-terminal SH3-domain of Grb2/3-3 and the proline-rich sequence contained in p27 immediately downstream of the Cdk binding domain. In living cells, enforcement of the cytoplasmic localization of p27, either by artificial manipulation of the nuclear/cytoplasmic transport signal sequence or by coexpression of ectopic Jab1/CSN5, markedly enhances the stable interaction between p27 and Grb2. Overexpression of Grb2 accelerates Jab1/CSN5-mediated degradation of p27, while Grb3-3 expression suppresses it. A p27 mutant unable to bind to Grb2 is transported into the cytoplasm in cells ectopically expressing Jab1/CSN5 but is refractory to the subsequent degradation. These findings indicate that Grb2 participates in a negative regulation of p27 and may directly link the signal transduction pathway with the cell cycle regulatory machinery.  相似文献   

4.
Lee EW  Oh W  Song J 《Molecules and cells》2006,22(2):133-140
Jun activation domain-binding protein 1 (Jab1) is involved in various cellular mechanisms including development in Drosophila and mouse, cell cycle control and signal transduction pathways. Recent studies also determined that Jab1 functions as a nuclear exporter and inducer of cytoplasmic degradation for several proteins including p53, p27, capsid of West Nile virus, and Smad4/7 proteins. In particular, p53 is shown to bind to and to be exported into the cytoplasm by Jab1, which helps to maintain low levels of p53 under normal conditions. This review was undertaken in an effort to understand the biological significance of the homeostasis of p53 as maintained in the presence of Jab1. Based on our observations, we have provided potential mechanistic hypotheses for the nuclear export of p53 in coordination with Jab1 and the role of other factors in these processes.  相似文献   

5.
p8 is an 80 amino-acid polypeptide identified because of its remarkable over-expression in the stressed pancreas. This protein, apparently devoid of enzymatic activity, is a powerful regulator of several intracellular pathways, suggesting that it has to interact with several molecular partners to modulate their activity. We used two-hybrid screening of a pre-transformed human testes cDNA library to identify some of these partners. One of them was the multifunctional protein Jab1, its interaction with p8 being confirmed by His6-pull down and co-immunoprecipitation assays. In addition, we could show that the two proteins co-localized in the cell. Our functional data demonstrate that Jab1 requires direct interaction with p8 to induce the translocation of p27 from nucleus to cytoplasm and its subsequent degradation. Experiments showing that the knock-down of p8 expression results in a strong inhibition of Jab1 activity confirmed that the mechanism by which Jab1 promotes cell growth by decreasing p27 level is p8-dependent.  相似文献   

6.
Jab1 interacts with a variety of signaling molecules and regulates their stability in mammalian cells. As the fifth component of the COP9 signalosome (CSN) complex, Jab1 (CSN5) plays a central role in the deneddylation of the cullin subunit of the Skp1-Cullin-F box protein ubiquitin ligase complex. In addition, a CSN-independent function of Jab1 is suggested but is less well characterized. To elucidate the function of Jab1, we targeted the Jab1 locus by homologous recombination in mouse embryonic stem cells. Jab1-null embryos died soon after implantation. Jab1-/- embryonic cells, which lacked other CSN components, expressed higher levels of p27, p53, and cyclin E, resulting in impaired proliferation and accelerated apoptosis. Jab1 heterozygous mice were healthy and fertile but smaller than their wild-type littermates. Jab1+/- mouse embryonic fibroblast cells, in which the amount of Jab1-containing small subcomplex, but not that of CSN, was selectively reduced, proliferated poorly, showed an inefficient down-regulation of p27 during G1, and was delayed in the progression from G0 to S phase by 3 h compared with the wild-type cells. Most interestingly, in Jab1+/- mouse embryonic fibroblasts, the levels of cyclin E and deneddylated Cul1 were unchanged, and p53 was not induced. Thus, Jab1 controls cell cycle progression and cell survival by regulating multiple cell cycle signaling pathways.  相似文献   

7.
8.
The biological mechanisms for maintaining the basal level of p53 in normal cells require nuclear exclusion and cytoplasmic degradation. Here, we showed that Jab1 facilitates p53 nuclear exclusion and its subsequent degradation in coordination with Hdm2. p53 was excluded from the nucleus in the presence of Jab1; this exclusion was prevented by leptomycin B treatment. Nuclear export of p53 was accompanied by a decrease in the levels of p53, as well as of its target proteins, which include p21 and Bax. Domain analyses of Jab1 showed that the N-terminal domain, 1-110, was capable of inducing cytoplasmic translocation of p53. Furthermore, 110-191 was required to facilitate the degradation of p53. Neither of these mutants incorporated into the CSN complex, indicating that Jab1 could affect the levels of p53 independent of intact CSN complex. Conversely, Jab1 was incapable of translocating and degrading two p53 mutants, W23S and 6KR, neither of which could be modified by Hdm2. Moreover, Jab1 did not affect the cellular localization or protein levels of p53 in p53 and Hdm2 double-null mouse embryo fibroblasts. We further observed that the ablation of endogenous Jab1 by small interfering RNA prevented Hdm2-mediated p53 nuclear exclusion. Under stressed conditions, which could sequester Hdm2 in its inactive state, Jab1 did not affect p53. Our studies implicate that Jab1 is required to remove post-translationally modified p53 and provide a novel target for p53-related cancer therapies.  相似文献   

9.
The nuclear export and rapid degradation of p27Kip1 at the G0–G1 transition are critical events for effective progression of the cell cycle. Several pathways have been proposed at the molecular level for the export of this cyclin-dependent kinase inhibitor from the nucleus. However, the addition of each new pathway renders the situation more complicated. We recently showed that cyclin D2 links growth signals to the cytoplasmic translocation and degradation of p27 at the G0–G1 transition. Here we describe our findings and discuss how the multiple potential mechanisms for p27 translocation that precedes its degradation might be integrated in the context of growth stimulation and G1 progression.  相似文献   

10.
p27kip1 has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP-/- embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared to wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.  相似文献   

11.
The nuclear export and cytoplasmic degradation of the cyclin-dependent kinase inhibitor p27 are required for effective progression of the cell cycle through the G(0)-G(1) transition. The mechanism responsible for this translocation of p27 has remained unclear, however. We now show that cyclin D2 directly links growth signaling with the nuclear export of p27 at the G(0)-G(1) transition in some cell types. The up-regulation of cyclin D2 in response to mitogenic stimulation was found to occur earlier than that of other D-type cyclins and in parallel with down-regulation of p27 at the G(0)-G(1) transition. RNA interference-mediated depletion of cyclin D2 inhibited the nuclear export of p27 and delayed its degradation at the G(0)-G(1) transition. In contrast, overexpression of cyclin D2 in G(0) phase shifted the localization of p27 from the nucleus to the cytoplasm and reduced the stability of p27. Overexpression of the cyclin D2(T280A) mutant, whose export from the nucleus is impaired, prevented the translocation and degradation of p27. These results indicate that cyclin D2 translocates p27 from the nucleus into the cytoplasm for its KPC-dependent degradation at the G(0)-G(1) transition.  相似文献   

12.
Nuclear p27kip1 is an established inhibitor of cyclin-dependent kinase-2, and it now appears that cytoplasmic p27kip1 inhibits the activation of RhoA. In this dual role, p27kip1 could coordinate cell cycle progression and cell migration.  相似文献   

13.
p27kip1 has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP−/− embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared with wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.Key words: p27kip1, Siah1, SIP, glucose starvation, cell migration  相似文献   

14.
The COP9 signalosome (CSN) complex is critical for mammalian cell proliferation and survival, but it is not known how the CSN affects the cell cycle. In this study, MEFs lacking CSN5/Jab1 were generated using a CRE-flox system. MEFs ceased to proliferate upon elimination of CSN5/Jab1. Rescue experiments indicated that the JAMM domain of CSN5/Jab1 was essential. CSN5/Jab1-elimination enhanced the neddylation of cullins 1 and 4 and altered the expression of many factors including cyclin E and p53. CSN5/Jab1-elimination inhibited progression of the cell cycle at multiple points, seemed to initiate p53-independent senescence and increased the ploidy of cells. Thus, CSN5/Jab1 controls different events of the cell cycle, preventing senescence and endocycle as well as the proper progression of the somatic cell cycle.

Structured summary

MINT-8046253: Csn1 (uniprotkb:Q99LD4) physically interacts (MI:0914) with Csn5 (uniprotkb:O35864), Csn8 (uniprotkb:Q8VBV7), Csn3 (uniprotkb:O88543), Csn7b (uniprotkb:Q8BV13) and Csn6 (uniprotkb:O88545) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

15.
16.
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27Kip1 stability, and that COP1 is a negative regulator of p27Kip1. Ectopic expression of CSN6 can decrease the expression of p27Kip1, while CSN6 knockdown leads to p27Kip1 stabilization. Mechanistic studies show that CSN6 interacts with p27Kip1 and facilitates ubiquitin-mediated degradation of p27Kip1. CSN6-mediated p27 degradation depends on the nuclear export of p27Kip1, which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.  相似文献   

17.
18.
19.
Brain-specific kinase 2 (BRSK2) was classified as an AMP-activated protein kinase (AMPK)-related kinase and one of the substrates of LKB1. Studies on homologs of BRSK2 in mice, SADA and SADB, implied that it might be involved in the regulation of cell polarity and cell cycle. However, physiological functions and molecular regulatory mechanisms of BRSK2 are incompletely understood. In this study, we isolated a novel BRSK2-interacting protein, c-Jun activation domain-binding protein-1 (Jab1), which was reported to mediate degradation of multiple proteins and positively regulate cell cycle progression. GST pull-down and immunoprecipitation assays revealed the direct interaction between BRSK2 and Jab1 in vitro and in vivo, respectively. The co-localization between Jab1 and BRSK2 in the perinuclear region was observed. Intriguingly, Jab1 promoted the ubiquitination and proteasome-dependent degradation of BRSK2. Silencing of endogenous Jab1 increased the cellular BRSK2 protein level. Consistent with this, BRSK2-mediated cell cycle arrest at the G2/M phase in mammalian cells was reversed by exogenous Jab1. Taken together, our findings provide a novel regulatory mechanism of BRSK2 through direct interaction with Jab1.  相似文献   

20.
The cyclin-dependent kinase inhibitor, p27(Kip1), which regulates cell cycle progression, is controlled by its subcellular localization and subsequent degradation. p27(Kip1) is phosphorylated on serine 10 (S10) and threonine 187 (T187). Although the role of T187 and its phosphorylation by Cdks is well-known, the kinase that phosphorylates S10 and its effect on cell proliferation has not been defined. Here, we identify the kinase responsible for S10 phosphorylation as human kinase interacting stathmin (hKIS) and show that it regulates cell cycle progression. hKIS is a nuclear protein that binds the C-terminal domain of p27(Kip1) and phosphorylates it on S10 in vitro and in vivo, promoting its nuclear export to the cytoplasm. hKIS is activated by mitogens during G(0)/G(1), and expression of hKIS overcomes growth arrest induced by p27(Kip1). Depletion of KIS using small interfering RNA (siRNA) inhibits S10 phosphorylation and enhances growth arrest. p27(-/-) cells treated with KIS siRNA grow and progress to S/G(2 )similar to control treated cells, implicating p27(Kip1) as the critical target for KIS. Through phosphorylation of p27(Kip1) on S10, hKIS regulates cell cycle progression in response to mitogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号