首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis from livestock, particularly cattle. In Michigan, USA tuberculous white-tailed deer transmit M. bovis to other deer and cattle. One approach in dealing with this wildlife reservoir is to vaccinate deer, thus interfering with the intraspecies and interspecies transmission cycles. Thirty-three white-tailed deer were assigned to one of two groups; oral vaccination with 1×108 colony-forming units of M. bovis BCG Danish (n = 17); and non-vaccinated (n = 16). One hundred eleven days after vaccination deer were infected intratonsilarly with 300 colony-forming units of virulent M. bovis. At examination, 150 days after challenge, BCG vaccinated deer had fewer gross and microscopic lesions, fewer tissues from which M. bovis could be isolated, and fewer late stage granulomas with extensive liquefactive necrosis. Fewer lesions, especially those of a highly necrotic nature should decrease the potential for dissemination of M. bovis within the host and transmission to other susceptible hosts.  相似文献   

2.
Wildlife are an important component in the vector-host-pathogen triangle of livestock diseases, as they maintain biological vectors that transmit pathogens and can serve as reservoirs for such infectious pathogens. Babesia bovis is a tick-borne pathogen, vectored by cattle fever ticks, Rhipicephalus spp., that can cause up to 90% mortality in naive adult cattle. While cattle are the primary host for cattle fever ticks, wild and exotic ungulates, including white-tailed deer (WTD), are known to be viable alternative hosts. The presence of cattle fever tick populations resistant to acaricides raises concerns regarding the possibility of these alternative hosts introducing tick-borne babesial parasites into areas free of infection. Understanding the B. bovis reservoir competence of these alternative hosts is critical to mitigating the risk of introduction. In this study, we tested the hypothesis that WTD are susceptible to infection with a B. bovis strain lethal to cattle. Two groups of deer were inoculated intravenously with either B. bovis blood stabilate or a larval extract supernatant containing sporozoites from infected R. microplus larvae. The collective data demonstrated that WTD are neither a transient host nor reservoir of B. bovis. This conclusion is supported by the failure of B. bovis to establish an infection in deer regardless of inoculum. Although specific antibody was detected for a short period in the WTD, the PCR results were consistently negative at multiple time points throughout the experiment and blood from WTD that had been exposed to parasite, transferred into naïve recipient susceptible calves, failed to establish infection. In contrast, naïve steers inoculated intravenously with either B. bovis blood stabilate or the larval extract supernatant containing sporozoites rapidly succumbed to disease. These findings provide evidence that WTD are not an epidemiological component in the maintenance of B. bovis infectivity to livestock.  相似文献   

3.
4.
White-tailed deer (Odocoileus virginianus) are commonly exposed to disease agents that affect livestock but environmental factors that predispose deer to exposure are unknown for many pathogens. We trapped deer during winter months on two study areas (Northern Forest and Eastern Farmland) in Wisconsin from 2010 to 2013. Deer were tested for exposure to six serovars of Leptospira interrogans (grippotyphosa, icterohaemorrhagiae, canicola, bratislava, pomona, and hardjo), bovine viral diarrhea virus (BVDV-1 and BVDV-2), infectious bovine rhinotracheitis virus (IBR), and parainfluenza 3 virus (PI3). We used logistic regression to model potential intrinsic (e.g., age, sex) and extrinsic (e.g., land type, study site, year, exposure to multiple pathogens) variables we considered biologically meaningful to exposure of deer to livestock pathogens. Deer sampled in 2010–2011 did not demonstrate exposure to BVDV, so we did not test for BVDV in subsequent years. Deer had evidence of exposure to PI3 (24.7%), IBR (7.9%), Leptospira interrogans serovar pomona (11.7%), L. i. bratislava (1.0%), L. i. grippotyphosa (2.5%) and L. i. hardjo (0.3%). Deer did not demonstrate exposure to L. interrogans serovars canicola and icterohaemorrhagiae. For PI3, we found that capture site and year influenced exposure. Fawns (n = 119) were not exposed to L. i. pomona, but land type was an important predictor of exposure to L. i. pomona for older deer. Our results serve as baseline exposure levels of Wisconsin white-tailed deer to livestock pathogens, and helped to identify important factors that explain deer exposure to livestock pathogens.  相似文献   

5.
The objective was to evaluate cellular immune response of captive white-tailed deer (Odocoileus virginianus) to live Mycobacterium bovis bacille Calmette Guerin (BCG) vaccination and to determine diagnostic implications of these responses. In vitro proliferative and interferon-gamma (IFN-gamma) responses to M. bovis purified protein derivative (PPD) were detected beginning 9 days postvaccination. Responses to Mycobacterium avium PPD, however, generally exceeded responses to M. bovis PPD. Interferon-gamma responses to M. avium PPD were not detected prior to vaccination nor in nonvaccinated deer, suggesting that vaccination with BCG boosted prior quiescent M. avium-sensitized cells. Both CD4+ and gammadelta T cells from vaccinated deer proliferated in response to M. bovis PPD stimulation. Intradermal administration of M. bovis PPD resulted in increases in skin thickness of vaccinated deer beginning 24 hr postinjection. Such early reactions were characterized by edema and minimal mononuclear cell infiltration, whereas later reactions (i.e., 72 hr postinjection) were more typical of delayed type hypersensitivity. Upon in vitro activation with pokeweed mitogen, CD44 expression increased and CD62L expression decreased on lymphocytes from deer regardless of vaccination status. Likewise, M. bovis PPD stimulation of lymphocytes from vaccinated deer resulted in increases in CD44 expression and decreases in CD62L expression. These findings demonstrate the potential of BCG vaccination to elicit strong cell-mediated immune responses and appropriate alterations in CD44 and CD62L expression with in vitro stimulation of white-tailed deer lymphocytes. In relation to M. bovis diagnosis, vaccination of white-tailed deer with BCG can induce skin test responses that classify the animal as a tuberculosis reactor. In contrast, BCG vaccination will likely not interfere with tuberculosis testing by the IFN-gamma assay.  相似文献   

6.
In this paper, we investigate the relationship between early detection of predators and predator avoidance in white-tailed deer ( Odocoileus virginianus ) and mule deer ( O. hemionus ), two closely related species that differ in their habitat preferences and in their anti-predator behavior. We used observations of coyotes ( Canis latrans ) hunting deer to test whether the distance at which white-tails and mule deer alerted to coyotes was related to their vulnerability to predation. Coyote encounters with both species were more likely to escalate when deer alerted at shorter distances. However, coyote encounters with mule deer progressed further than encounters with white-tails that alerted at the same distance, and this was not due to species differences in group size or habitat. We then conducted an experiment in which a person approached groups of deer to compare the detection abilities and the form of alert response for white-tails and mule deer, and for age groups within each species. Mule deer alerted to the approacher at longer distances than white-tails, even after controlling for variables that were potentially confounding. Adult females of both species alerted sooner than conspecific juveniles. Mule deer almost always looked directly at the approacher as their initial response, whereas white-tails were more likely to flee or to look in another direction with no indication that they pinpointed the approacher during the trial. Mule deer may have evolved the ability to detect predators earlier than white-tails as an adaptation to their more open habitats, or because they need more time to coordinate subsequent anti-predator defenses.  相似文献   

7.
Tuberculosis due to Mycobacterium bovis affects both captive and free-ranging Cervidae in the United States. Various animal models have been developed to study tuberculosis of both humans and animals. Generally, tuberculosis is transmitted by aerosol and oral routes. Models of aerosol exposure of large animals to M. bovis are uncommon. In order to develop a reliable method of aerosol exposure of white-tailed deer (Odocoileus virginianus) to M. bovis, 12 healthy white-tailed deer, aged 8-10 mo, were infected by aerosol exposure to 2 x 10(5) to 1 x 10(6) colony forming units (CFU) (high close, n = 4) of M. bovis or 6 x 10(2) to 1.6 x 10(3) CFU (low dose, n = 8) of M. bovis. Tuberculous lesions were more widely disseminated in (leer receiving the high dose, while lesions in deer receiving the low dose were more focused on the lungs and associated lymph nodes (tracheobronchial and mediastinal). Aerosol delivery of M. bovis to white-tailed deer results in a reliable manner of experimental infection that may be useful for studies of disease pathogenesis, immune response, mycobacterial shedding, and vaccine efficacy.  相似文献   

8.
White-tailed deer (Odocoileus virginianus) experimentally infected with a virulent strain of Mycobacterium bovis have been shown to transmit the bacterium to other deer and cattle (Bos taurus) by sharing of pen waste and feed. The risk of transmission of M. bovis bacille Calmette-Guerin (BCG) vaccine from orally vaccinated white-tailed deer to other deer and cattle, however, is not well understood. In order to evaluate this risk, we orally vaccinated 14 white-tailed deer with 1×109 colony forming units BCG in lipid-formulated baits and housed them with nine non-vaccinated deer. Each day we exposed the same seven naïve cattle to pen space utilized by the deer to look for transmission between the two species. Before vaccination and every 60 days until the end of the study, we performed tuberculin skin testing on deer and cattle, as well as interferon-gamma testing in cattle, to detect cellular immune response to BCG exposure. At approximately 27 weeks all cattle and deer were euthanized and necropsied. None of the cattle converted on either caudal fold, comparative cervical tests, or interferon-gamma assay. None of the cattle were culture positive for BCG. Although there was immunological evidence that BCG transmission occurred from deer to deer, we were unable to detect immunological or microbiological evidence of transmission to cattle. This study suggests that the risk is likely to be low that BCG-vaccinated white-tailed deer would cause domestic cattle to react to the tuberculin skin test or interferon-gamma test through exposure to a BCG-contaminated environment.  相似文献   

9.
SYNOPSIS. A study of coccidiasis of white-tailed deer from the Welder Refuge in south Texas was conducted from 1964 to 1968. Thirteen percent of 374 deer were infected with low numbers of Eimeria mccordocki, the only coccidium found commonly. Percentage of infection and numbers of coccidia were highest for young deer, for deer collected in winter, and for deer collected in plant communities with “sparse” vegetation. Immunity, environmental change, intensive and concentrated grazing behavior by deer in open areas are presented as factors contributing to the findings.  相似文献   

10.
White-tailed deer (Odocoileus virginianus) are reservoirs for Mycobacterium bovis in northeast Michigan, USA. Production of nitric oxide (NO) by activated macrophages is a potent mechanism of mycobacterial killing. The capacity of macrophages to produce NO, however, varies among mammalian species. The objective of this study was to determine if mononuclear cells from white-tailed deer produce nitrite as an indication of NO production and, if so, is NO produced in response to stimulation with M. bovis antigens. Supernatants were harvested from adherent peripheral blood mononuclear cell (PBMC) cultures that had been stimulated with either Mannheimia haemolytica lipopolysaccharide (LPS) or media alone (i.e., no stimulation). Nitrite levels within M. haemolytica LPS-stimulated culture supernatants exceeded (P < 0.05) those detected within supernatants from non-stimulated cultures as well as those detected within supernatants from cultures receiving an inhibitor of NO synthase in addition to M. haemolytica LPS. In response to stimulation with M. bovis antigens, nitrite production by PBMC from M. bovis-infected deer exceeded (P < 0.05) the production by PBMC from non-infected deer. The response of PBMC from infected deer to M. bovis antigens exceeded (P < 0.05) the response of parallel cultures from the same deer receiving no stimulation. The response of PBMC from M. bovis-infected deer to M. avium antigens did not differ from that of PBMC from M. bovis-infected deer to no stimulation or from that of PBMC from non-infected deer to M. avium antigens. These findings indicate that adherent PBMC from white-tailed deer are capable of NO production and that mononuclear cells isolated from M. bovis-infected white-tailed deer produce NO in an antigen-specific recall response.  相似文献   

11.
Mycobacterium bovis, the causative agent of bovine tuberculosis, has become established in free-ranging white-tailed deer Odocoileus virginianus in northeastern Michigan. The practice of supplemental feeding of white-tailed deer during the winter is believed to contribute to transmission of M. bovis between deer. The current study was conducted to determine the ability of M. bovis to survive on various feedstuffs commonly used as supplemental feed for deer in northeast Michigan (i.e., apples, corn, carrots, sugar beets, potatoes, and hay) and the effect of maintenance at -20 C, 8 C, and 23 C on survival. Mycobacterium bovis survived on all feedstuffs at all temperatures tested for at least 7 days. At 23 C, M. bovis could still be isolated from samples of apples, corn and potatoes at 112 days. This study suggests that contamination of feedstuffs by M. bovis-infected deer could act as a source of indirect transmission between deer because M. bovis is able to survive in temperatures similar to those recorded during winter months in northeastern Michigan. Current efforts to ban or control supplemental feeding of deer should have a positive effect on decreasing transmission of M. bovis among deer.  相似文献   

12.
Cranial/intracranial abscess disease is an emerging source of significant mortality for male white-tailed deer (Odocoileus virginianus). Most cases of cranial/intracranial abscess disease are associated with infection by the opportunistic pathogen Trueperella pyogenes although the relationship between the prevalence of the bacteria and occurrence of disease is speculative. We examined 5,612 hunter-harvested deer from 29 sites across all physiographic provinces in Georgia for evidence of cranial abscess disease and sampled the forehead, lingual, and nasal surfaces from 692 deer. We used polymerase chain reaction (PCR) to determine presence of T. pyogenes from these samples. We found T. pyogenes prevalence at a site was a predictor for the occurrence of cranial abscess disease. Prevalence of T. pyogenes did not differ between samples from the nose or tongue although prevalence along the forehead was greater for males than females (p = 0.04), particularly at sites with high occurrence of this disease. Socio-sexual behaviors, bacterial prevalence, or physiological characteristics may predispose male deer to intracranial/cranial abscess disease. Determination of factors that affect T. pyogenes prevalence among sites may help explain the occurrence of this disease among populations.  相似文献   

13.
White-tailed deer (Odocoileus virginianus) in Michigan, USA, are wildlife reservoirs of bovine tuberculosis (bTB) with documented spread to cattle. In vaccine efficacy trials, Mycobacterium bovis bacillus Calmette–Guerin (BCG) administered orally reduces colonization and bTB-associated lesions in white-tailed deer after experimental challenge with virulent M. bovis. The objective of this study was to develop and evaluate the palatability of a molasses-based bait for oral delivery of BCG to white-tailed deer. Relevant practical properties of the bait such as physical stability under various environmental conditions were evaluated, as well as palatability. Captive deer consumed baits within 3 h of introduction during 48 of 50 trials. Digital game cameras revealed consumption of all placed baits by one deer over 62 % of the time. Addition of BCG vaccine did not negatively impact palatability. Physical stability analysis demonstrated that ice and water significantly reduced bait stability as measured with a compression assay. Storage of BCG-containing baits at 4 °C showed a slight decrease in colony-forming units (CFUs) by day 31. In contrast, storage at ?20 or ?80 °C over the same 31-day period showed no significant decrease in BCG viability. The results of this study suggest that molasses-based baits, as prepared here, represent a plausible means of oral delivery of BCG to white-tailed deer under most environmental conditions.  相似文献   

14.

Background

There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-γ) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN-γ responses to BCG in this age group are poorly described. Characterisation of IFN-γ responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy.

Methodology/Principal Findings

236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-γ, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89–98% depending on the antigen) made IFN-γ responses and there was significant correlation between IFN-γ responses to the different mycobacterial antigens (Spearman''s coefficient ranged from 0.340 to 0.675, p = 10−6–10−22). IL-13 and IL-5 responses were generally low and there were more non-responders (33–75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens

Conclusions/Significance

Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN-γ responses.  相似文献   

15.
We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 10(9) colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 10(9) cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 10(6) cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administered BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.  相似文献   

16.
17.
Samples of rumen contents from 33 white-tailed deer (Odocoileus virginianus), 31 axis deer (Axis axis), 26 sika deer (Cervus nippon), and 25 fallow deer (Dama dama) were collected from four study areas in central Texas. The geometric mean concentration of total protozoa was 50.2 x 10(4) per ml, with no differences between species (P > 0.36). White-tailed deer had a higher percentage of Entodinium and lower percentage of Diplodiniinae (P < 0.01) than the other deer species, which were not different from each other. Occurrence of Epidinium, Isotricha, and Dasytricha was sporadic and did not differ among deer species. Numerous new host records of protozoan species were observed: white-tailed deer--four; axis deer--five; sika deer--five; fallow deer--four. This brings the total number of protozoan species identified in each deer species to: white-tailed--eight; axis--12; sika--15; fallow--16. For all species combined, protozoan concentration were 7.5 to 11-fold higher (P < 0.01) from Area 4, which differed from the other three areas by having a stream that allowed deer to have free access to water. Criteria used for identification of medium-size Eudiplodinium species were evaluated.  相似文献   

18.
PCR primers specific for the Mycobacterium tuberculosis complex were used to detect the presence of Mycobacterium bovis BCG (Pasteur) in soil microcosms and Mycobacterium bovis in environmental samples taken from a farm in Ireland with a history of bovine tuberculosis. M. bovis genes were detected in soil at 4 and 21 months after possible contamination. Gene levels were found in the range of 1 × 103 to 3.6 × 103 gene copies g of soil−1, depending on the sampling area. Areas around badger setts had the highest levels of detectable genes and were shown to have the highest levels of gene persistence. M. bovis-specific 16S rRNA sequences were detected, providing evidence of the presence of viable cells in Irish soils. Studies of DNA turnover in soil microcosms proved that dead cells of M. bovis BCG did not persist beyond 10 days. Further microcosm experiments revealed that M. bovis BCG survival was optimal at 37°C with moist soil (−20 kPa; 30% [vol/wt]). This study provides clear evidence that M. bovis can persist in the farm environment outside of its hosts and that climatic factors influence survival rates.  相似文献   

19.
PCR primers specific for the Mycobacterium tuberculosis complex were used to detect the presence of Mycobacterium bovis BCG (Pasteur) in soil microcosms and Mycobacterium bovis in environmental samples taken from a farm in Ireland with a history of bovine tuberculosis. M. bovis genes were detected in soil at 4 and 21 months after possible contamination. Gene levels were found in the range of 1 x 10(3) to 3.6 x 10(3) gene copies g of soil(-1), depending on the sampling area. Areas around badger setts had the highest levels of detectable genes and were shown to have the highest levels of gene persistence. M. bovis-specific 16S rRNA sequences were detected, providing evidence of the presence of viable cells in Irish soils. Studies of DNA turnover in soil microcosms proved that dead cells of M. bovis BCG did not persist beyond 10 days. Further microcosm experiments revealed that M. bovis BCG survival was optimal at 37 degrees C with moist soil (-20 kPa; 30% [vol/wt]). This study provides clear evidence that M. bovis can persist in the farm environment outside of its hosts and that climatic factors influence survival rates.  相似文献   

20.
Mycobacterium avium subsp. paratuberculosis (Map) is the causative agent of paratuberculosis or Johne's disease, a chronic enteric disease of domestic ruminants as well as some nondomestic ruminants. Paratuberculosis is characterized by a protracted subclinical phase followed by clinical signs such as diarrhea, weight loss, and hypoproteinemia. Fecal shedding of Map is characteristic of both the subclinical and clinical phases, and it is important in disease transmission. Lesions of paratuberculosis are characterized by chronic granulomatous enteritis and mesenteric lymphadenitis. Animal models of paratuberculosis that simulate all aspects of the disease are rare. Oral inoculation of 9-day-old white-tailed deer (Odocoileus virginianus) on 3 June 2002 with 1.87 x 10(10) colony-forming units of Map strain K10 resulted in clinical disease (soft to diarrheic feces) as early as 146 days after inoculation; lesions consistent with paratuberculosis were observed in animals at the termination of the study. Intermittent fecal shedding of Map was seen between 28 and 595 days (4 March 2004) after inoculation. These findings suggest that experimental oral inoculation of white-tailed deer fawns may mimic all aspects of subclinical and clinical paratuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号