首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several different cytokines and growth factors secreted by mesenchymal stem cells (MSCs) have been hypothesized to play a role in breast cancer progression. By using a small panel of breast cancer cell lines (MCF‐7, T47D, and SK‐Br‐3 cells), we analyzed the role of interleukin‐6 (IL‐6) and vascular endothelial growth factor A (VEGF) in the cross‐talk between MSCs and breast cancer cells. We performed migration assays in which breast cancer cells were allowed to migrate in response to conditioned medium from MSCs (MSCs‐CM), in absence or in presence of the anti‐VEGF antibody bevacizumab or an anti‐IL‐6 antibody, alone or in combination. We found that anti‐VEGF and anti‐IL‐6 antibodies inhibited the migration of breast cancer cells and that the combination had an higher inhibitory effect. We next evaluated the effects of recombinant VEGF and IL‐6 proteins on breast cancer cell growth and migration. IL‐6 and VEGF had not significant effects on the proliferation of breast carcinoma cells. In contrast, both VEGF and IL‐6 significantly increased the ability to migrate of MCF‐7, T47D and SK‐Br‐3 cells, with the combination showing a greater effect as compared with treatment with a single protein. The combination of VEGF and IL‐6 produced in breast cancer cells a more significant and more persistent activation of MAPK, AKT, and p38MAPK intracellular signaling pathways. These results suggest that MSC‐secreted IL‐6 and VEGF may act as paracrine factors to sustain breast cancer cell migration. J. Cell. Biochem. 113: 3363–3370, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
目的以结直肠癌细胞SW480作为研究载体,分析具核梭杆菌(F.nucleatum)对Cdk5和STAT3途径相关基因及其炎症因子表达的影响,阐明F.nucleatum协同Cdk5促进结直肠癌形成和发展的分子机制。方法以结直肠癌细胞SW480作为研究载体,运用Western Blotting、qPCR、免疫组化和细胞划痕等实验研究F.nucleatum和Cdk5对结直肠癌形成的影响。结果免疫组化结果显示,癌组织Cdk5阳性表达率明显高于癌旁组织(t=8.218,P0.01)。细胞划痕实验结果表明,F.nucleatum菌液作用的结直肠癌细胞迁移率明显高于对照组(24 h:t=5.868,P0.01; 48 h:t=6.941,P0.01)。Western Blotting结果显示,F.nucleatum协同Cdk5可能通过STAT3通路调控结直肠癌细胞凋亡。qPCR结果显示,F.nucleatum菌液作用的结直肠癌细胞的炎症因子表达明显高于对照组(IL-6:t=5.542,P0.05; COX2:t=16.893,P0.01; TNF-α:t=16.963,P0.01; IL-8:t=3.733,P0.01)。结论 F.nucleatum协同Cdk5促进了结直肠癌细胞的迁移。  相似文献   

5.
6.
Breast cancer is the most aggressive form of all cancers, with high incidence and mortality rates. The purpose of the present study was to investigate the molecular mechanism by which methylsulfonylmethane (MSM) inhibits breast cancer growth in mice xenografts. MSM is an organic sulfur-containing natural compound without any toxicity. In this study, we demonstrated that MSM substantially decreased the viability of human breast cancer cells in a dose-dependent manner. MSM also suppressed the phosphorylation of STAT3, STAT5b, expression of IGF-1R, HIF-1α, VEGF, BrK, and p-IGF-1R and inhibited triple-negative receptor expression in receptor-positive cell lines. Moreover, MSM decreased the DNA-binding activities of STAT5b and STAT3, to the target gene promoters in MDA-MB 231 or co-transfected COS-7 cells. We confirmed that MSM significantly decreased the relative luciferase activities indicating crosstalk between STAT5b/IGF-1R, STAT5b/HSP90α, and STAT3/VEGF. To confirm these findings in vivo, xenografts were established in Balb/c athymic nude mice with MDA-MB 231 cells and MSM was administered for 30 days. Concurring to our in vitro analysis, these xenografts showed decreased expression of STAT3, STAT5b, IGF-1R and VEGF. Through in vitro and in vivo analysis, we confirmed that MSM can effectively regulate multiple targets including STAT3/VEGF and STAT5b/IGF-1R. These are the major molecules involved in tumor development, progression, and metastasis. Thus, we strongly recommend the use of MSM as a trial drug for treating all types of breast cancers including triple-negative cancers.  相似文献   

7.
Lysyl oxidase (LOX), an extracellular amine oxidase, catalyzes the cross-linking of collagen and elastin. LOX has been also shown to play an essential role in promoting the invasive and metastatic potential of breast tumor cells. However, the LOX-interacting factors in these processes are not known. In this study, we identified placental lactogen (PL), a member of the growth hormone/prolactin hormone family, as a LOX-interacting partner using yeast two-hybrid screens. PL is normally only expressed in placental syncytiotrophoblasts, but PL genes are amplified and expressed in a high percentage of invasive ductal breast carcinomas. We confirmed LOX-PL interactions using far Western and solid phase binding assays. In activity assays, PL was not a substrate or inhibitor of LOX. We further demonstrated that PL is expressed in breast tumor epithelial cells and detected LOX-PL interactions by coimmunoprecipitation in invasive breast cancer cells. In MCF-10A normal breast epithelial cells stably expressing LOX, PL, or both, LOX had no effect on cell proliferation, PL alone increased proliferation by 49%, and coexpression of LOX and PL led to a 121% increase in cell proliferation. Unlike in tumor cells, LOX did not induce a more migratory phenotype in MCF-10A cells; nor did PL. However, their coexpression resulted in a 240% increase in cell migration, suggesting that these interactions may be highly relevant to the transition of epithelial cells toward a migratory phenotype during the development and progression of breast carcinoma and a significant role for LOX-PL interactions in epithelial cell behavior.  相似文献   

8.
9.
Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.  相似文献   

10.
《Cellular signalling》2014,26(9):1853-1862
Understanding the mechanisms of colorectal cancer (CRC) metastatic progression is essential to reducing its morbidity and mortality. Pyruvate kinase (PK) catalyses the final step of glycolysis and has been identified as a critical regulator of glucose consumption. However, the mechanisms and roles of PKM1 and PKM2 in the regulation of CRC cell migration and cell adhesion remain elusive. Here, we report that PKM2 rather than PKM1 drives CRC cell migration and cell adhesion, whereas PKM attenuation reverses these phenomena. Furthermore, the overexpression of PKM2 significantly increases the expression of N-cadherin, MMP-2, MMP-9, STAT3, Snail-2, pFAK and active β1-integrin, while E-cadherin expression is suppressed. More importantly, the results indicated that PKM2 overexpression facilitates STAT3 nuclear translocation, and it is required for PKM2 function in the regulation of migration and adhesion associated signalling. In addition, the dimeric form of PKM2, which lacks the pyruvate kinase activities but possesses protein kinase activity, is critical for CRC cell migration and cell adhesion. Overall, this study suggests that PKM2 overexpression promotes CRC cell migration and cell adhesion by regulating STAT3-associated signalling and that PKM2 may serve as a therapeutic target for CRC metastasis.  相似文献   

11.
12.
ObjectivesCancer cell migration to secondary organs remains an essential cause of death among breast cancer (BrCa) patients. Cell motility mainly relies on actin dynamics. Our previous reports verified that dishevelled‐associated activator of morphogenesis 1 (Daam1) regulates invadopodia extension and BrCa cell motility. However, how Daam1 is involved in actin filament assembly and promotes pseudopodia formation in BrCa cells remains unclear.Materials and methodsOne hundred human BrCa samples were collected at Women''s Hospital of Nanjing Medical University. Immunohistochemistry (IHC) was used to examine Daam1 and Fascin expression. Wound healing and Boyden chamber assays were used to explore cell migration and pseudopodia extension of BrCa cells. Co‐IP/pull down and Western blotting were performed to study the physical interaction between Daam1 and Fascin. Immunofluorescence assays were performed to observe whether Daam1 and Fascin were colocalized and mediated actin filament assembly.ResultsFascin was upregulated in BrCa tissues compared with that in paracarcinoma tissues. The downregulation of Fascin caused a decline in pseudopodia formation and cell motility. Moreover, we found that Daam1 interacted with Fascin via formin homology (FH) domains, especially the FH2 domain. Immunofluorescence assays showed that Daam1 and Fascin partially colocalized to actin filaments, and the knockdown of Daam1 or Fascin failed to colocalize to short and curved actin filaments.ConclusionsDaam1 specifically binds to Fascin via FH domains and cooperatively facilitates pseudopodia formation and cell migration by promoting actin filament assembly in BrCa.

Daam1 notably collaborates with Fascin to promote the assembly of actin filament, pseudopodia extension and cell migration.  相似文献   

13.
14.
BACKGROUND: Breast cancer is an increasingly common malignancy. Several vitamins such as retinoic acid (RA), ascorbic acid (AA), vitamin D and vitamin E are known to prevent the development and progression of breast cancer. OBJECTIVE: We sought to determine whether RA and AA together (RA+AA) acted synergistically in blocking the proliferation of human breast cancer cells. To elucidate the mechanism by which RA+AA inhibited breast carcinoma proliferation, we then evaluated the gene expression profiles of the treated and untreated cells by radioactive cDNA microarray analysis. METHODS: We cultured the human breast cancer cell line MCF-7 for 3 days with 100 nM RA and/or 1 mM AA, counted the cell numbers and harvested the total RNAs for cDNA microarray analysis. RESULTS: RA, AA and RA+AA reduced MCF-7 cell proliferation by 20.7%, 23.3% and 75.7% relative to the untreated cell proliferation, respectively. The synergistic ratio of RA and AA was 1.72. The MCF-7 gene expression profiles showed that 29 genes were up-regulated and 38 genes were down-regulated after RA+AA treatment. The nature of these genes suggests that the mechanism by which RA and AA act synergistically in inhibiting human breast cancer cell proliferation may involve the expression of genes that induce differentiation and block proliferation, and the up-regulation of antioxidant enzymes and proteins involved in apoptosis, cell cycle regulation and DNA repair. CONCLUSION: Combined treatment with RA and AA inhibits the proliferation of human breast cancer cells by altering their gene expression related to antioxidation processes as well as the proliferation inhibitory pathway.  相似文献   

15.
16.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.  相似文献   

17.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.  相似文献   

18.
Recent studies have demonstrated that the Wnt/β-catenin signaling plays an important role in stem cell aging. However, the mechanisms of cell senescence induced by Wnt/β-catenin signaling are still poorly understood. Our preliminary study has indicated that activated Wnt/β-catenin signaling can induce MSC aging. In this study, we reported that the Wnt/β-catenin signaling was a potent activator of reactive oxygen species (ROS) generation in MSCs. After scavenging ROS with N-acetylcysteine, Wnt/β-catenin signaling-induced MSC aging was significantly attenuated and the DNA damage and the expression of p16INK4A, p53, and p21 were reduced in MSCs. These results indicated that the Wnt/β-catenin signaling could induce MSC aging through promoting the intracellular production of ROS, and ROS may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号