首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease −0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) −0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations.  相似文献   

2.
This work tested whether or not populations of Bombus brasiliensis isolated on mountain tops of southeastern Brazil belonged to the same species as populations widespread in lowland areas in the Atlantic coast and westward along the Paraná-river valley. Phylogeographic and population genetic analyses showed that those populations were all conspecific. However, they revealed a previously unrecognized, apparently rare, and potentially endangered species in one of the most threatened biodiversity hotspots of the World, the Brazilian Atlantic Forest. This species is described here as Bombus bahiensis sp. n., and included in a revised key for the identification of the bumblebee species known to occur in Brazil. Phylogenetic analyses based on two mtDNA markers suggest this new species to be sister to B. brasiliensis, from which its workers and queens can be easily distinguished by the lack of a yellow hair-band on the first metasomal tergum. The results presented here are consistent with the hypothesis that B. bahiensis sp. n. may have originated from an ancestral population isolated in an evergreen-forest refuge (the so-called Bahia refuge) during cold, dry periods of the Pleistocene. This refuge is also known as an important area of endemism for several animal taxa, including other bees. Secondary contact between B. bahiensis and B. brasiliensis may be presently prevented by a strip of semi-deciduous forest in a climate zone characterized by relatively long dry seasons. Considering the relatively limited range of this new species and the current anthropic pressure on its environment, attention should be given to its conservation status.  相似文献   

3.
Many bumblebee species have been suffering from significant declines across their ranges in the Northern Hemisphere over the last few decades. The remaining populations of the rare species are now often isolated due to habitat fragmentation and have reduced levels of genetic diversity. The persistence of these populations may be threatened by inbreeding depression, which may result in a higher susceptibility to parasites. Here we investigate the relationship between genetic diversity and prevalence of the parasitic mite Locustacarus buchneri in bumblebees, using the previously-studied system of Bombus muscorum and Bombus jonellus in the Western Isles of Scotland. We recorded L. buchneri prevalence in 17 populations of B. muscorum and 13 populations of B. jonellus and related the results to levels of heterozygosity. For B. muscorum, we found that prevalence of the mite was higher in populations with lower genetic diversity but there was no such relationship in the more genetically diverse B. jonellus. In contrast to population-level measures of genetic diversity, the heterozygosity of individual bees was not correlated with infection status. We suggest population-level genetic homogeneity may facilitate parasite transmission and elevate prevalence, with potential consequences for population persistence.  相似文献   

4.
The bumblebee fauna of the North of European Russia includes 34 species. The trends in bumblebee diversity within the region are characterized. The species richness is the greatest in the middle taiga subzone and decreases from south to north, reaching its minimum in the Arctic tundra. Based on analysis of the zonal differentiation of bumblebee species, only four of them were found to be true arctic forms: Bombus (Alpinobombus) polaris, B. (Al.) balteatus, B. (Al.) hyperboreus, and B. (Pr.) lapponicus glacialis, whereas the rest belong to the temperate, boreal, and subboreal groups.  相似文献   

5.
For range‐restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between Iwebberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200–0.441; H o = 0.192–0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species’ range core have relatively high genetic diversity, supporting in part a central‐marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in Iwebberi.  相似文献   

6.
The increasing evidence for population declines in bumble bee (Bombus) species worldwide has accelerated research efforts to explain losses in these important pollinators. In North America, a number of once widespread Bombus species have suffered serious reductions in range and abundance, although other species remain healthy. To examine whether declining and stable species exhibit different levels of genetic diversity or population fragmentation, we used microsatellite markers to genotype populations sampled across the geographic distributions of two declining (Bombus occidentalis and Bombus pensylvanicus) and four stable (Bombus bifarius; Bombus vosnesenskii; Bombus impatiens and Bombus bimaculatus) Bombus species. Populations of declining species generally have reduced levels of genetic diversity throughout their range compared to codistributed stable species. Genetic diversity can be affected by overall range size and degree of isolation of local populations, potentially confounding comparisons among species in some cases. We find no evidence for consistent differences in gene flow among stable and declining species, with all species exhibiting weak genetic differentiation over large distances (e.g. >1000 km). Populations on islands and at high elevations experience relatively strong genetic drift, suggesting that some conditions lead to genetic isolation in otherwise weakly differentiated species. B. occidentalis and B. bifarius exhibit stronger genetic differentiation than the other species, indicating greater phylogeographic structure consistent with their broader geographic distributions across topographically complex regions of western North America. Screening genetic diversity in North American Bombus should prove useful for identifying species that warrant monitoring, and developing management strategies that promote high levels of gene flow will be a key component in efforts to maintain healthy populations.  相似文献   

7.
Population genetic theory and empirical evidence indicate that deleterious alleles can be purged in small populations. However, this viewpoint remains controversial. It is unclear whether natural selection is powerful enough to purge deleterious mutations when wild populations continue to decline. Pheasants are terrestrial birds facing a long-term risk of extinction as a result of anthropogenic perturbations and exploitation. Nevertheless, there are scant genomics resources available for conservation management and planning. Here, we analyzed comparative population genomic data for the three extant isolated populations of Brown eared pheasant (Crossoptilon mantchuricum) in China. We showed that C. mantchuricum has low genome-wide diversity and a contracting effective population size because of persistent declines over the past 100,000 years. We compared genome-wide variation in C. mantchuricum with that of its closely related sister species, the Blue eared pheasant (C. auritum) for which the conservation concern is low. There were detrimental genetic consequences across all C. mantchuricum genomes including extended runs of homozygous sequences, slow rates of linkage disequilibrium decay, excessive loss-of-function mutations, and loss of adaptive genetic diversity at the major histocompatibility complex region. To the best of our knowledge, this study is the first to perform a comprehensive conservation genomic analysis on this threatened pheasant species. Moreover, we demonstrated that natural selection may not suffice to purge deleterious mutations in wild populations undergoing long-term decline. The findings of this study could facilitate conservation planning for threatened species and help recover their population size.  相似文献   

8.
Much attention is paid in conservation planning to the concept of a species, to ensure comparability across studies and regions when classifying taxa against criteria of endangerment and setting priorities for action. However, various jurisdictions now allow taxonomic ranks below the level of species and nontaxonomic intraspecific divisions to be factored into conservation planning—subspecies, key populations, evolutionarily significant units, or designatable units. Understanding patterns of genetic diversity and its distribution across the landscape is a key component in the identification of species boundaries and determination of substantial geographic structure within species. A total of 12,532 reliable polymorphic SNP loci were generated from 63 populations (286 individuals) covering the distribution of the Australian eastern three‐lined skink, Bassiana duperreyi, to assess genetic population structure in the form of diagnosable lineages and their distribution across the landscape, with particular reference to the recent catastrophic bushfires of eastern Australia. Five well‐supported diagnosable operational taxonomic units (OTUs) existed within B. duperreyi. Low levels of divergence of B. duperreyi between mainland Australia and Tasmania (no fixed allelic differences) support the notion of episodic exchange of alleles across Bass Strait (ca 60 m, 25 Kya) during periods of low sea level during the Upper Pleistocene rather than the much longer period of isolation (1.7 My) indicated by earlier studies using mitochondrial sequence variation. Our study provides foundational work for the detailed taxonomic re‐evaluation of this species complex and the need for biodiversity assessment to include an examination of cryptic species and/or cryptic diversity below the level of species. Such information on lineage diversity within species and its distribution in the context of disturbance at a regional scale can be factored into conservation planning regardless of whether a decision is made to formally diagnose new species taxonomically and nomenclaturally.  相似文献   

9.
Changes in primary productivity have the potential to substantially alter food webs, with positive outcomes for some species and negative outcomes for others. Understanding the environmental context and species traits that give rise to these divergent outcomes is a major challenge to the generality of both theoretical and applied ecology. In aquatic systems, nutrient-mediated eutrophication has led to major declines in species diversity, motivating us to seek terrestrial analogues using a large-mammal system across 598 000 km2 of the Canadian boreal forest. These forests are undergoing some of the most rapid rates of land-use change on Earth and are home to declining caribou (Rangifer tarandus caribou) populations. Using satellite-derived estimates of primary productivity, coupled with estimates of moose (Alces alces) and wolf (Canis lupus) abundance, we used path analyses to discriminate among hypotheses explaining how habitat alteration can affect caribou population growth. Hypotheses included food limitation, resource dominance by moose over caribou, and apparent competition with predators shared between moose and caribou. Results support apparent competition and yield estimates of wolf densities (1.8 individuals 1000 km−2) above which caribou populations decline. Our multi-trophic analysis provides insight into the cascading effects of habitat alteration from forest cutting that destabilize terrestrial predator–prey dynamics. Finally, the path analysis highlights why conservation actions directed at the proximate cause of caribou decline have been more successful in the near term than those directed further along the trophic chain.  相似文献   

10.
Unraveling the relationship between demographic declines and genetic changes over time is of critical importance to predict the persistence of at‐risk populations and to propose efficient conservation plans. This is particularly relevant in spatially structured populations (i.e. metapopulations) in which the spatial arrangement of local populations can modulate both demographic and genetic changes. We used ten‐year demo‐genetic monitoring to test 1) whether demographic declines were associated with genetic diversity declines and 2) whether the spatial structure of a metapopulation can weaken or reinforce these demographic and genetic temporal trends. We continuously surveyed, over time and across their entire range, two metapopulations of an endemic freshwater fish species Leuciscus burdigalensis: one metapopulation that had experienced a recent demographic decline and a second metapopulation that was stable over time. In the declining metapopulation, the number of alleles rapidly decreased, the inbreeding coefficient increased, and a genetic bottleneck emerged over time. In contrast, genetic indices were constant over time in the stable metapopulation. We further show that, in the declining metapopulation, demographic and genetic declines were not homogeneously distributed across the metapopulation. We notably identify one local population situated downstream as a ‘reservoir’ of individuals and genetic variability that dampens both the demographic and genetic declines measured at the metapopulation level. We demonstrate the usefulness of long‐term monitoring that combines both genetic and demographic parameters to understand and predict temporal population fluctuations of at‐risk species living in a metapopulation context.  相似文献   

11.
The worldwide spread of diseases is considered a major threat to biodiversity and a possible driver of the decline of pollinator populations, particularly when novel species or strains of parasites emerge. Previous studies have suggested that populations of introduced European honeybee (Apis mellifera) and bumblebee species (Bombus terrestris and Bombus ruderatus) in Argentina share the neogregarine parasite Apicystis bombi with the native bumblebee (Bombus dahlbomii). In this study we investigated whether A. bombi is acting as an emergent parasite in the non-native populations. Specifically, we asked whether A. bombi, recently identified in Argentina, was introduced by European, non-native bees. Using ITS1 and ITS2 to assess the parasite’s intraspecific genetic variation in bees from Argentina and Europe, we found a largely unstructured parasite population, with only 15% of the genetic variation being explained by geographic location. The most abundant haplotype in Argentina (found in all 9 specimens of non-native species) was identical to the most abundant haplotype in Europe (found in 6 out of 8 specimens). Similarly, there was no evidence of structuring by host species, with this factor explaining only 17% of the genetic variation. Interestingly, parasites in native Bombus ephippiatus from Mexico were genetically distant from the Argentine and European samples, suggesting that sufficient variability does exist in the ITS region to identify continent-level genetic structure in the parasite. Thus, the data suggest that A. bombi from Argentina and Europe share a common, relatively recent origin. Although our data did not provide information on the direction of transfer, the absence of genetic structure across space and host species suggests that A. bombi may be acting as an emergent infectious disease across bee taxa and continents.  相似文献   

12.
Conservation management is improved by incorporating information about the spatial distribution of population genetic diversity into planning strategies. Northern Australia is the location of some of the world’s most severe ongoing declines of endemic mammal species, yet we have little genetic information from this regional mammal assemblage to inform a genetic perspective on conservation assessment and planning. We used next-generation sequencing data from remnant populations of the threatened brush-tailed rabbit-rat (Conilurus penicillatus) to compare patterns of genomic diversity and differentiation across the landscape and investigate standardised hierarchical genomic diversity metrics to better understand brush-tailed rabbit-rat population genomic structure. We found strong population structuring, with high levels of differentiation between populations (FST = 0.21–0.78). Two distinct genomic lineages between the Tiwi Islands and mainland are also present. Prioritisation analysis showed that one population in both lineages would need to be conserved to retain at least ~80% of alleles for the species. Analysis of standardised genomic diversity metrics showed that approximately half of the total diversity occurs among lineages (δ = 0.091 from grand total γ = 0.184). We suggest that a focus on conserving remnant island populations may not be appropriate for the preservation of species-level genomic diversity and adaptive potential, as these populations represent a small component of the total diversity and a narrow subset of the environmental conditions in which the species occurs. We also highlight the importance of considering both genomic and ecological differentiation between source and receiving populations when considering translocations for conservation purposes.Subject terms: Ecological genetics, Population genetics, Conservation biology, Biogeography  相似文献   

13.
Arctic–alpine plants have enormous ranges in the Northern Hemisphere. Phylogeographic studies have provided insights into their glacial survival as well as their postglacial colonization history. However, our understanding of the population dynamics of disjunct alpine populations in temperate regions remains limited. During Pleistocene cold periods, alpine populations of arctic–alpine species in East Asia were either connected to an ice-free Beringia refugium or they persisted with prolonged isolation after their establishment. To estimate which of these scenarios is more likely, we elucidated the genetic structure of Phyllodoce caerulea (Ericaceae) in Beringia and northern Japan, East Asia. Sequence variation in multiple nuclear loci revealed that P. caerulea can be distinguished into northern and southern groups. A demographic analysis demonstrated that the north–south divergence did not predate the last glacial period and detected introgression from Phyllodoce aleutica, relative widely distributed in East Asia, exclusively into the southern group. Therefore, although there has been genetic divergence between northern Japan and Beringia in P. caerulea, the divergence is unlikely to have resulted from their prolonged geographic separation throughout several cycles of glacial and interglacial periods. Instead, our study suggests that the introgression contributed to the genetic divergence of P. caerulea and that the range of P. caerulea was plausibly connected between northern Japan and Beringia during the last glacial period. Overall, our study not only provides a biogeographic insight into alpine populations of arctic–alpine plants in East Asia but also emphasizes the importance of careful interpretation of genetic structure for inferring phylogeographic history.  相似文献   

14.
Tilia cordata Mill. is a valuable tree species enriching the ecological values of the coniferous‐dominated boreal forests in Europe. Following the historical decline, spreading of Tilia sp. is challenged by the elevated inbreeding and habitat fragmentation. We studied the geographical distribution of genetic diversity of Tilia cordata populations in Lithuania. We used 14 genomic microsatellite markers to genotype 543 individuals from 23 wild‐growing populations. We found that Tilia cordata retained high levels of genetic diversity (population F IS = 0–0.15, H o = 0.53–0.69, H e = 0.56–0.75). AMOVA, Bayesian clustering, and Monmonier''s barrier detection indicate weak but significant differentiation among the populations (F ST = 0.037***) into geographically interpretable clusters of (a) western Lithuania with high genetic heterogeneity but low genetic diversity, bottleneck effects, (b) relatively higher genetic diversity of Tilia cordata on rich and most soils of midland lowland, and (c) the most differentiated populations on poor soils of the coolest northeastern highland possessing the highest rare allele frequency but elevated inbreeding and bottleneck effects. Weak genetic differentiation among the Tilia cordata populations in Lithuania implies common ancestry, absence of strong adaptive gradients, and effective genetic exchange possible mediated via the riparian networks. A hypothesis on riparian networks as gene flow mediators in Tilia cordata was raised based on results of this study.  相似文献   

15.
Many bumblebee species are declining at a rapid rate in the United Kingdom and elsewhere. This is commonly attributed to the decline in floral resources that has resulted from an intensification in farming practices. Here we assess growth of nests of the bumblebee, Bombus terrestris, in habitats providing different levels of floral resources. Experimental nests were placed out in conventional farmland, in farmland with flower-rich conservation measures and in suburban areas. Nests gained weight more quickly and attained a larger final size in suburban areas compared to elsewhere. The diversity of pollens gathered by bees was highest in suburban areas, and lowest in conventional farmland. Nests in suburban areas were also more prone to attack by the specialist bumblebee parasite Aphomia sociella, suggesting that this moth is more abundant in suburban areas than elsewhere. Overall, our results demonstrate that gardens provide a greater density and diversity of floral resources than farmland, and probably support larger populations of B. terrestris. Contrary to expectation, schemes deployed to enhance farmland biodiversity appear to have little measurable impact on nest growth of this bumblebee species. We argue that B. terrestris probably forage over a larger scale than that on which farms are managed, so that nest growth is determined by the management of a large number of neighbouring farms, not just that in which the nest is located.  相似文献   

16.
The Californian Channel Islands are near–shore islands with high levels of endemism, but extensive habitat loss has contributed to the decline or extinction of several endemic taxa. A key parameter for understanding patterns of endemism and demography in island populations is the magnitude of inter–island dispersal. This paper estimates the extent of migration and genetic differentiation in three extant and two extinct populations of Channel Island song sparrows (Melospiza melodia graminea). Inter–island differentiation was substantial (G''''ST: 0.14–0.37), with San Miguel Island having the highest genetic divergence and lowest migration rates. Santa Rosa and Santa Cruz Island populations were less diverged with higher migration rates. Genetic signals of past population declines were detected in all of the extant populations. The Channel Island populations were significantly diverged from mainland populations of M. m. heermanni (G''''ST: 0.30–0.64). Ten mtDNA haplotypes were recovered across the extant and extinct Channel Island population samples. Two of the ten haplotypes were shared between the Northern and Southern Channel Islands, with one of these haplotypes being detected on the Californian mainland. Our results suggest that there is little contemporary migration between islands, consistent with early explanations of avian biogeography in the Channel Islands, and that song sparrow populations on the northern Channel Islands are demographically independent.  相似文献   

17.
Changes in agricultural practice across Europe and North America have been associated with range contractions and local extinction of bumblebees (Bombus spp.). A number of agri‐environment schemes have been implemented to halt and reverse these declines, predominantly revolving around the provision of additional forage plants. Although it has been demonstrated that these schemes can attract substantial numbers of foraging bumblebees, it remains unclear to what extent they actually increase bumblebee populations. We used standardized transect walks and molecular techniques to compare the size of bumblebee populations between Higher Level Stewardship (HLS) farms implementing pollinator‐friendly schemes and Entry Level Stewardship (ELS) control farms. Bumblebee abundance on the transect walks was significantly higher on HLS farms than ELS farms. Molecular analysis suggested maximum foraging ranges of 566 m for Bombus hortorum, 714 m for B. lapidarius, 363 m for B. pascuorum and 799 m for B. terrestris. Substantial differences in maximum foraging range were found within bumblebee species between farm types. Accounting for foraging range differences, B. hortorum (47 vs 13 nests/km2) and B. lapidarius (45 vs 22 nests/km2) were found to nest at significantly greater densities on HLS farms than ELS farms. There were no significant differences between farm type for B. terrestris (88 vs 38 nests/km2) and B. pascuorum (32 vs 39 nests/km2). Across all bumblebee species, HLS management had a significantly positive effect on bumblebee nest density. These results show that targeted agri‐environment schemes that increase the availability of suitable forage can significantly increase the size of wild bumblebee populations.  相似文献   

18.
Much remains unknown about the genetic status and population connectivity of high-elevation and high-latitude freshwater invertebrates, which often persist near snow and ice masses that are disappearing due to climate change. Here we report on the conservation genetics of the meltwater stonefly Lednia tumana (Ricker) of Montana, USA, a cold-water obligate species. We sequenced 1530 bp of mtDNA from 116 L. tumana individuals representing “historic” (>10 yr old) and 2010 populations. The dominant haplotype was common in both time periods, while the second-most-common haplotype was found only in historic samples, having been lost in the interim. The 2010 populations also showed reduced gene and nucleotide diversity and increased genetic isolation. We found lower genetic diversity in L. tumana compared to two other North American stonefly species, Amphinemura linda (Ricker) and Pteronarcys californica Newport. Our results imply small effective sizes, increased fragmentation, limited gene flow, and loss of genetic variation among contemporary L. tumana populations, which can lead to reduced adaptive capacity and increased extinction risk. This study reinforces concerns that ongoing glacier loss threatens the persistence of L. tumana, and provides baseline data and analysis of how future environmental change could impact populations of similar organisms.  相似文献   

19.
Among the loss of genetic diversity due to population declines, population fragmentation and habitat loss, hybridization also stands as a threat to Morelet’s crocodile (Crocodylus moreletii) populations. Genetic surveys in Belize and the Yucatan Peninsula have detected evidence of hybridization with the American crocodile (C. acutus). Admixture between these two species is most likely driven by human-mediated translocations. Along the central gulf coast of Mexico, C. moreletii populations are presumed to be purebred. To test this, we use nine microsatellite loci and sequence data from the mitochondrial control region to detect if C. acutus alleles have introgressed into populations of C. moreletii from central Veracruz. In 2010, C. moreletii was transferred from Appendix I to II of CITES based on a whole species demographic analysis, which indicated that populations had recovered across its range. Our study shows that populations in central Veracruz are purebred, although they exhibit low levels of genetic diversity most likely caused by inbreeding. Our data also suggest there is fragmentation among populations of C. moreletii, which may lead to further loss of genetic variation. Due the purity and low genetic diversity of C. moreletii populations from central Veracruz, we recommend increased protection and active management practices that take genetic data into account.  相似文献   

20.
Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号