首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho GTPases in animal cell mitosis   总被引:9,自引:0,他引:9  
The Rho GTPases have been thought to influence cell morphogenesis through remodeling of the actin cytoskeleton. Consistently, downstream targets such as the mDia family of formins and the WASP family proteins induce actin nucleation and polymerization, and another set of downstream effectors, the ROCK family protein kinases, are involved in regulation of actomyosin contractility. However, evidence has now accumulated that Rho GTPases also regulate local dynamics of microtubules. The mDia family proteins, for example, function downstream of Rho to stabilize and align microtubules in interphase cells. Concomitantly, the role of Rho GTPases in animal cell division, once thought to be limited to cytokinesis, has now been shown to extend to mitosis. Recent work indicates that they may function during both spindle orientation and chromosome congression. However, their involvement is cell-type-specific, raising arguments for and against a mitotic role for Rho GTPases.  相似文献   

2.
Contraction reaction: mechanical regulation of Rho GTPase   总被引:2,自引:0,他引:2  
Epithelial cell differentiation is influenced by the physical environment. Local external changes in rigidity of the extracellular matrix are 'sensed' as increased or decreased tension and communicated intracellularly. The communications network that signals the state of the extracellular physical environment acts through the actin cytoskeleton to modulate Rho GTPase activity. A recent paper reports the surprising finding that breast epithelial cells respond to flexible surroundings by downregulating Rho activity through the actions of the Rho-regulated ROCK kinases.  相似文献   

3.
Small GTPases of the Rho protein family are master regulators of the actin cytoskeleton and are targeted by potent virulence factors of several pathogenic bacteria. Their dysfunctional regulation can lead to severe human pathologies. Both host and bacterial factors can activate or inactivate Rho proteins by direct post‐translational modifications: such as deamidation and transglutamination for activation, or ADP‐ribosylation, glucosylation, adenylylation and phosphorylation for inactivation. We review and compare these unconventional ways in which both host cells and bacterial pathogens regulate Rho proteins.  相似文献   

4.
GTPase regulation: getting aRnd Rock and Rho inhibition   总被引:1,自引:0,他引:1  
Chardin P 《Current biology : CB》2003,13(18):R702-R704
Rnd proteins are atypical members of the Rho small G protein family that inhibit the formation of actomyosin contractile fibers via activation of RhoGAPs and inhibition of a Rho effector, the Ser/Thr kinase Rock. These mechanisms might be used to fine-tune Rho GTPase inhibition locally at sites where particular actin structures need to be made.  相似文献   

5.
6.
7.
Spatial regulation of membrane traffic is fundamental to many biological processes, including epithelial cell polarization and neuronal synaptogenesis. The multiprotein exocyst complex is localized to sites of polarized exocytosis, and is required for vesicle targeting and docking at specific domains of the plasma membrane. One component of the complex, Sec3, is thought to be a spatial landmark for polarized exocytosis. We have searched for proteins that regulate the polarized localization of the exocyst in the budding yeast Saccharomyces cerevisiae. Here we report that certain rho1 mutant alleles specifically affect the localization of the exocyst proteins. Sec3 interacts directly with Rho1 in its GTP-bound form, and functional Rho1 is needed both to establish and to maintain the polarized localization of Sec3. Sec3 is not the only mediator of the effect of Rho1 on the exocyst, because some members of the complex are correctly targeted independently of the interaction between Rho1 and Sec3. These results reveal the action of parallel pathways for the polarized localization of the exocytic machinery, both of which are under the control of Rho1, a master regulator of cell polarity.  相似文献   

8.
ATM activation following DNA damage is a critical event which is required for efficient DNA repair and cell survival, yet signaling mechanisms controlling its activation are incompletely understood. The RhoGEF Net1 has previously been reported to control Rho GTPase activation and downstream cell survival outcomes following double strand DNA damage. However the role of Net1 isoforms in controlling ATM-dependent cell signaling has not been assessed. In the present work we show that expression of the Net1A isoform is specifically required for efficient activation of ATM but not the related kinase DNA-PK after ionizing radiation. Surprisingly Net1A overexpression also potently suppresses ATM activation and phosphorylation of its substrate H2AX. This effect does not require catalytic activity towards RhoA or RhoB, and neither Rho GTPase affects ATM activation, on its own. Consistent with a role in controlling ATM activation, Net1A knockdown also impairs DNA repair and cell survival. Taken together these data indicate that Net1A plays a plays a previously unrecognized, Rho GTPase-independent role in controlling ATM activity and downstream signaling after DNA damage to impact cell survival.  相似文献   

9.
The final, irreversible step in the duplication and distribution of genomes to daughter cells takes place when chromosomes split at the metaphase-to-anaphase transition. A protease of the CD clan, separase (C50 family), is the key regulator of this transition. During metaphase, cohesion between sister chromatids is maintained by a chromosomal protein complex, cohesin. Anaphase is triggered when separase cleaves the Scc1 subunit of cohesin at two specific recognition sequences. As a result of this cleavage, the cohesin complex is destroyed, allowing the spindle to pull sister chromatids into opposite halves of the cell. Because of the final and irreversible nature of Scc1 cleavage, this reaction is tightly controlled. Several independent mechanisms impose regulation on separase activity, as well as on the susceptibility of the cleavage target Scc1 to cleavage by separase. This chapter provides an overview of these multiple levels of regulation.  相似文献   

10.
11.
Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease.  相似文献   

12.
Rho family GTPases are GDP/GTP-regulated molecular switches that regulate signaling pathways controlling diverse cellular processes. Wrch-1 was identified as a Wnt-1 regulated Cdc42 homolog, upregulated by Wnt1 signaling in Wnt1-transformed mouse mammary cells, and was able to promote formation of filopodia and activate the PAK serine/threonine kinase. Wrch-1 shares significant sequence and functional similarity with the Cdc42 small GTPase. However, Wrch-1 possesses a unique N-terminal 46 amino acid sequence extension that contains putative Src homology 3 (SH3) domain-interacting motifs. We determined the contribution of the N terminus to Wrch-1 regulation and activity. We observed that Wrch-1 possesses properties that distinguish it from Cdc42 and other Rho family GTPases. Unlike Cdc42, Wrch-1 possesses an extremely rapid, intrinsic guanine nucleotide exchange activity. Although the N terminus did not influence GTPase or GDP/GTP cycling activity in vitro, N-terminal truncation of Wrch-1 enhanced its ability to interact with and activate PAK and to cause growth transformation. The N terminus associated with the Grb2 SH3 domain-containing adaptor protein, and this association increased the levels of active Wrch-1 in cells. We propose that Grb2 overcomes N-terminal negative regulation to promote Wrch-1 effector interaction. Thus, Wrch-1 exhibits an atypical model of regulation not seen in other Rho family GTPases.  相似文献   

13.
Rho family small GTPase plays a key role in the regulation of cell shape and migration in mammalian cells. Constitutive activation of Rho GTPase leads to the aberrant cell morphology and migration. We identified nm23-H2 as a binding partner of Lbc proto-oncogene product, which specifically activates RhoA, and revealed that nm23-H2 could act as a negative regulator of Rho activity. Furthermore, we found that Lbc, nm23-H2 and ICAP1-α could form tertial complex in cells, and this complex formation was thought to be critical for cell migration stimulated by integrin. It is reported that nm23-H1 bound to Tiam1 and Dbl, which activates Rac and Cdc42 small GTPase, respectively. We discuss the role of nm23 in the regulation of cell morphology and cell migration via Rho family GTPases.  相似文献   

14.
Evidence has been obtained that indicates the presence of small 22 kDa GTP-binding Rho proteins through ADP-ribosylation by Clostridium botulinum C3 exotoxin in Mucor circinelloides. Rho protein was detected at all stages of growth studied. During polarized growth, both under aerobic conditions and during the yeast-mycelia transition, the radiolabeling of the [32P]ADP-ribosylated protein increased when tube formation occurred and decreased as the hyphae branched. However, when Mucor grew isotropically, the Rho protein band was thick and its intensity did not vary significantly even after bud formation and separation of daughter cells. Crude extracts of yeast and mycelial cells exhibited a broad 22 kDa band of the [32P]ADP-ribosylated Rho protein that was resolved into a protein with a pI of 6.0, after two-dimensional electrophoresis, corresponding to the Rho1p homolog. Furthermore, [32P]ADP-ribosylated Rho protein from soluble and particulate extracts of multipolarized mycelial cells obtained from the yeast-mycelia transition was separated into two proteins with pI of 6.0 and 6.4, respectively, after two-dimensional electrophoresis. These correspond to the Rho1p and Rho3p homologs, respectively. Therefore, our results show that an increase in Rho accumulation is associated with polarized growth.  相似文献   

15.
The Rho GTPases Rac1 and Cdc42 have been implicated in the regulation of axon outgrowth and guidance. However, the downstream effector pathways through which these GTPases exert their effects on axon development are not well characterized. Here, we report that axon outgrowth defects within specific subsets of motoneurons expressing constitutively active Drosophila Rac1 largely persist even with the addition of an effector-loop mutation to Rac1 that disrupts its ability to bind to p21-activated kinase (Pak) and other Cdc42/Rac1 interactive-binding (CRIB)-motif effector proteins. While hyperactivation of Pak itself does not lead to axon outgrowth defects as when Rac1 is constitutively activated, live analysis reveals that it can alter filopodial activity within specific subsets of neurons similar to constitutive activation of Cdc42. Moreover, we show that the axon guidance defects induced by constitutive activation of Cdc42 persist even in the absence of Pak activity. Our results suggest that (1) Rac1 controls axon outgrowth through downstream effector pathways distinct from Pak, (2) Cdc42 controls axon guidance through both Pak and other CRIB effectors, and (3) Pak's primary contribution to in vivo axon development is to regulate filopodial dynamics that influence growth cone guidance.  相似文献   

16.
Neuroepithelial transforming gene 1 (Net1) is a RhoA-subfamily–specific guanine nucleotide exchange factor that is overexpressed in multiple human cancers and is required for proliferation. Molecular mechanisms underlying its role in cell proliferation are unknown. Here we show that overexpression or knockdown of Net1 causes mitotic defects. Net1 is required for chromosome congression during metaphase and generation of stable kinetochore microtubule attachments. Accordingly, inhibition of Net1 expression results in spindle assembly checkpoint activation. The ability of Net1 to control mitosis is independent of RhoA or RhoB activation, as knockdown of either GTPase does not phenocopy effects of Net1 knockdown on nuclear morphology, and effects of Net1 knockdown are effectively rescued by expression of catalytically inactive Net1. We also observe that Net1 expression is required for centrosomal activation of p21-activated kinase and its downstream kinase Aurora A, which are critical regulators of centrosome maturation and spindle assembly. These results identify Net1 as a novel regulator of mitosis and indicate that altered expression of Net1, as occurs in human cancers, may adversely affect genomic stability.  相似文献   

17.
18.
GFP-based fluorescence resonance energy transfer (FRET) probes that visualize local activity-changes of Ras and Rho GTPases in living cells are now available for examining the spatio-temporal regulation of these proteins. This article describes principles and strategies to develop intramolecular FRET probes for Ras- and Rho-family GTPases. The procedure for characterizing candidate probes, and image acquisition and processing are also explained. An optimal FRET probe should have (i) a wide dynamic range (which means a high sensitivity), (ii) a high fluorescence intensity, (iii) target specificity, and (iv) a minimal perturbation to endogenous signaling cascades. Although an improvement of FRET probes should be executed in a trial-and-error manner, practical tips for optimization are provided here. In addition, we illustrate some applications of FRET probes for neuronal cells, which are composed of diverse subcellular compartments with different functions; thus, tools to decipher the dynamics of GTPase activity in each compartment have long been desired.  相似文献   

19.
Rho GTPase-activating proteins in cell regulation   总被引:35,自引:0,他引:35  
  相似文献   

20.
The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility processes. The major difficulty in addressing these isoform-specific effects is that isoforms typically contain highly similar primary amino acid sequences and thus are able to interact with the same upstream regulators and the downstream effector targets. Here, we will introduce the major members of each GTPase subfamily and discuss recent advances in the design and application of fluorescent resonance energy transfer-based probes, which are at the forefront of the technologies available to directly probe the differential, spatiotemporal activation dynamics of these proteins in live single cells. Currently, it is possible to specifically detect the activation status of RhoA vs. RhoC isoforms, as well as Cdc42 vs. TC-10 isoforms in living cells. Clearly, additional efforts are still required to produce biosensor systems capable of detecting other isoforms of Rho GTPases including RhoB, Rac2/3, RhoG, etc. Through such efforts, we will uncover the isoform-specific roles of these near-identical proteins in living cells, clearly an important area of the Rho GTPase biology that is not yet fully appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号