首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.  相似文献   

3.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins that modulate neurotransmitter and G protein signaling. RGS7 and its binding partners Galpha and Gbeta5 are enriched in brain, but biochemical mechanisms governing RGS7/Galpha/Gbeta5 interactions and membrane association are poorly defined. We report that RGS7 exists as one cytosolic and three biochemically distinct membrane-bound fractions (salt-extractable, detergent-extractable, and detergent-insensitive) in brain. To define factors that determine RGS7 membrane attachment, we examined the biochemical properties of recombinant RGS7 and Gbeta5 synthesized in Spodoptera frugiperda insect cells. We have found that membrane-bound but not cytosolic RGS7 is covalently modified by the fatty acid palmitate. Gbeta5 is not palmitoylated. Both unmodified (cytosolic) and palmitoylated (membrane-derived) forms of RGS7, when complexed with Gbeta5, are equally effective stimulators of Galpha(o) GTPase activity, suggesting that palmitoylation does not prevent RGS7/Galpha(o) interactions. The isolated core RGS domain of RGS7 selectively binds activated Galpha(i/o) in brain extracts and is an effective stimulator of both Galpha(o) and Galpha(i1) GTPase activities in vitro. In contrast, the RGS7/Gbeta5 complex selectively interacts with Galpha(o) only, suggesting that features outside the RGS domain and/or Gbeta5 association dictate RGS7-Galpha interactions. These findings define previously unrecognized biochemical properties of RGS7, including the first demonstration that RGS7 is palmitoylated.  相似文献   

4.
Formation of the immunological synapse between an antigen-presenting cell (APC) and a T cell leads to signal generation in both cells involved. In T cells, the lipid raft-associated transmembrane adaptor protein LAT plays a central role. Its phosphorylation is a crucial step in signal propagation, including the calcium response and mitogen-activated protein kinase activation, and largely depends on its association with the SLP76 adaptor protein. Here we report the discovery of a new palmitoylated transmembrane adaptor protein, termed SCIMP. SCIMP is expressed in B cells and other professional APCs and is localized in the immunological synapse due to its association with tetraspanin-enriched microdomains. In B cells, it is constitutively associated with Lyn kinase and becomes tyrosine phosphorylated after major histocompatibility complex type II (MHC-II) stimulation. When phosphorylated, SCIMP binds to the SLP65 adaptor protein and also to the inhibitory kinase Csk. While the association with SLP65 initiates the downstream signaling cascades, Csk binding functions as a negative regulatory loop. The results suggest that SCIMP is involved in signal transduction after MHC-II stimulation and therefore serves as a regulator of antigen presentation and other APC functions.  相似文献   

5.
Transmembrane adaptor proteins are membrane-anchored proteins consisting of a short extracellular part, a transmembrane domain, and a cytoplasmic part with various protein-protein interaction motifs but lacking any enzymatic activity. They participate in the regulation of various signaling pathways by recruiting other proteins to the proximity of cellular membranes where the signaling is often initiated and propagated. In this work, we show that LST1/A, an incompletely characterized protein encoded by MHCIII locus, is a palmitoylated transmembrane adaptor protein. It is expressed specifically in leukocytes of the myeloid lineage, where it localizes to the tetraspanin-enriched microdomains. In addition, it binds SHP-1 and SHP-2 phosphatases in a phosphotyrosine-dependent manner, facilitating their recruitment to the plasma membrane. These data suggest a role for LST1/A in negative regulation of signal propagation.  相似文献   

6.
A well known function of palmitoylation is to promote protein binding to cell membranes. Until recently, it was unclear what additional roles, if any, palmitoylation has in controlling protein localization in cells. Recent studies of palmitoylated forms of the small GTPase Ras have now revealed that palmitoylation plays multiple roles in the regulation of protein trafficking, including targeting proteins into the secretory pathway and recycling proteins between the plasma membrane and Golgi complex. We here describe how quantitative fluorescence microscopy and photobleaching approaches can be used to study the intracellular targeting and trafficking of GFP-tagged palmitoylated proteins in living cells. We discuss (1) general considerations for fluorescence recovery after photobleaching (FRAP) measurements of GFP-tagged proteins; (2) FRAP-based assays to test the strength of binding of palmitoylated proteins to cell membranes; (3) methods to establish the kinetics and mechanisms of recycling of palmitoylated proteins between the Golgi complex and the plasma membrane; (4) the use of the palmitoylation inhibitor 2-bromo-palmitate as a tool to study the dynamic regulation of protein targeting and trafficking by palmitate turnover.  相似文献   

7.
The signals involved in axonal trafficking and presynaptic clustering are poorly defined. Here we show that targeting of the gamma-aminobutyric acid-synthesizing enzyme glutamate decarboxylase 65 (GAD65) to presynaptic clusters is mediated by its palmitoylated 60-aa NH(2)-terminal domain and that this region can target other soluble proteins and their associated partners to presynaptic termini. A Golgi localization signal in aa 1-23 followed by a membrane anchoring signal upstream of the palmitoylation motif are required for this process and mediate targeting of GAD65 to the cytosolic leaflet of Golgi membranes, an obligatory first step in axonal sorting. Palmitoylation of a third trafficking signal downstream of the membrane anchoring signal is not required for Golgi targeting. However, palmitoylation of cysteines 30 and 45 is critical for post-Golgi trafficking of GAD65 to presynaptic sites and for its relative dendritic exclusion. Reduction of cellular cholesterol levels resulted in the inhibition of presynaptic clustering of palmitoylated GAD65, suggesting that the selective targeting of the protein to presynaptic termini is dependent on sorting to cholesterol-rich membrane microdomains. The palmitoylated NH(2)-terminal region of GAD65 is the first identified protein region that can target other proteins to presynaptic clusters.  相似文献   

8.
We have isolated nectin3/PRR3, the fourth human member of the nectin/PRR family, also described as the alpha herpes virus receptor family. Nectin/PRR members are adhesion molecules expressed at intercellular junctions. Nectin3/PRR3 is a transmembrane protein, whose extracellular region contains three Ig-like domains (V, C and C) and shares approximately 30% identity with the other members. It is mainly expressed in testis and placental tissues. SDS-PAGE analyses demonstrate that nectin3/PRR3 has a molecular weight of 83kDa. Nectin1/PRR1L and nectin2/PRR2S and L were found to be specifically expressed at the intercellular junctions. This localization is in part due to the interaction of the C-terminal part of these receptors (ended by the consensus sequence A/EXYV) and the PDZ domain of afadin. In this report we demonstrate that the nectin3/PRR3 receptor carries the A/EXYV consensus sequence and interacts in vivo with both long and short isoforms of afadin. These results suggest that the human nectin3/PRR3 is a new afadin-associated molecule.  相似文献   

9.
TOR (Target of Rapamycin) is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) based proteomic strategy to identify new mammalian TOR (mTOR) binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40) and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP) and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFalpha and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5) and was therefore named PRR5-Like (PRR5L). PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1) and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death.  相似文献   

10.
11.
12.
13.
The circadian clock controls the period, phasing, and amplitude of processes that oscillate with a near 24-h rhythm. One core group of clock components in Arabidopsis that controls the pace of the central oscillator is comprised of five PRR (pseudo-response regulator) proteins whose biochemical function in the clock remains unclear. Peak expression of TOC1 (timing of cab expression 1)/PRR1, PRR3, PRR5, PRR7, and PRR9 are each phased differently over the course of the day and loss of any PRR protein alters period. Here we show that, together with TOC1, PRR5 is the only other likely proteolytic substrate of the E3 ubiquitin ligase SCF(ZTL) within this PRR family. We further demonstrate a functional significance for the phosphorylated forms of PRR5, TOC1, and PRR3. Each PRR protein examined is nuclear-localized and is differentially phosphorylated over the circadian cycle. The more highly phosphorylated forms of PRR5 and TOC1 interact best with the F-box protein ZTL (ZEITLUPE), suggesting a mechanism to modulate their proteolysis. In vivo degradation of both PRR5 and ZTL is inhibited by blue light, likely the result of blue light photoperception by ZTL. TOC1 and PRR3 interact in vivo and phosphorylation of both is necessary for their optimal binding in vitro. Additionally, because PRR3 and ZTL both interact with TOC1 in vivo via the TOC1 N terminus, taken together these data suggest that the TOC1/PRR3 phosphorylation-dependent interaction may protect TOC1 from ZTL-mediated degradation, resulting in an enhanced amplitude of TOC1 cycling.  相似文献   

14.
15.
The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.  相似文献   

16.
17.
Single-stranded RNA (ssRNA) bacteriophages of the family Leviviridae infect gram-negative bacteria. They are restricted to a single host genus. Phage PRR1 is an exception, having a broad host range due to the promiscuity of the receptor encoded by the IncP plasmid. Here we report the complete genome sequence of PRR1. Three proteins homologous with those of other ssRNA phages, i.e., maturation, coat, and replicase proteins, were identified. A fourth protein has a lysis function. Comparison of PRR1 with other members of the Leviviridae family places PRR1 in the genus Levivirus with some characteristics more similar to those of members of the genus Allolevivirus.  相似文献   

18.
19.
20.
ras proteins are post-translationally processed at their carboxyl-terminal CAAX motif by a triplet of modifications: prenylation of C with farnesyl, proteolytic trimming of AAX, and carboxyl-methylation. These modifications co-operate with palmitoylation of nearby sites or a polybasic region to target plasma membrane localization. The related YPT/rab proteins in contrast are localized to compartments of the endo-membrane system and may be involved in directing membrane traffic. These proteins end in XCC or CXC motifs. We have analyzed the processing of members of this subfamily form the fission yeast Schizosaccharomyces pombe. We find using in vitro translation in reticulocyte lysates that YPT1, -3, and -5 are prenylated with geranylgeranyl and that they incorporate label from [3H]mevalonic acid when expressed in transfected COS cells in vivo. Furthermore, prenylation was necessary for membrane binding in vivo. The CXC protein YPT5, but neither of the two XCC proteins YPT1 and YPT3, was carboxyl-methylated in S. pombe and in COS cells in vivo. However, YPT5 was not carboxyl-methylated in vitro in lysates which were able to methylate ras protein. YPT3 was detectably palmitoylated when expressed in COS cells, though at a much lower level than ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号