首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular biosensors are devices of molecular size that are designed for sensing different analytes on the basis of biospecific recognition. They should provide two coupled functions - the recognition (specific binding) of the target and the transduction of information about the recognition event into a measurable signal. The present review highlights the achievements and prospects in design and operation of molecular biosensors for which the transduction mechanism is based on fluorescence. We focus on the general strategy of fluorescent molecular sensing, construction of sensor elements, based on natural and designed biopolymers (proteins and nucleic acids). Particular attention is given to the coupling of sensing elements with fluorescent reporter dyes and to the methods for producing efficient fluorescence responses.  相似文献   

2.
We present single‐molecule fluorescence data of fluorescent proteins GFP, YFP, DsRed, and mCherry, a new derivative of DsRed. Ensemble and single‐molecule fluorescence experiments proved mCherry as an ideally suited fluorophore for single‐molecule applications, demonstrated by high photostability and rare fluorescence‐intensity fluctuations. Although mCherry exhibits the lowest fluorescence quantum yield among the fluorescent proteins investigated, its superior photophysical characteristics suggest mCherry as an ideal alternative in single‐molecule fluorescence experiments. Due to its spectral characteristics and short fluorescence lifetime of 1.46 ns, mCherry complements other existing fluorescent proteins and is recommended for tracking and localization of target molecules with high accuracy, fluorescence resonance energy transfer (FRET), fluorescence lifetime imaging microscopy (FLIM), or multicolor applications. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
自从绿色荧光蛋白(GFP)被发现以来,荧光蛋白在生物医学领域已经成为一种重要的荧光成像工具.随着红色荧光蛋白DsRed的出现,各种优化的DsRed突变体和远红荧光蛋白也不断涌现.其中荧光蛋白生色团的形成机制对改建更优的荧光蛋白变种影响很大,对于红色荧光蛋白而言,大多数的红色荧光蛋白的生色团类型为DsRed类似生色团,在此基础上又出现了Far-red DsRed类似生色团.目前,含DsRed类似生色团的荧光蛋白主要有单体红色荧光蛋白、光转换荧光蛋白、斯托克斯红移蛋白、荧光计时器等.这些优化的荧光蛋白作为分子探针可以实现对活细胞、细胞器或胞内分子的时空标记和追踪,已经在生物工程学、细胞生物学、基础医学领域得到广泛应用.本文综述了含DsRed类似生色团的荧光蛋白的研究进展及其应用,以及由此发展起来的远红荧光蛋白在活体显微成像技术中的应用,并展望了荧光探针技术研究的新方向.  相似文献   

4.
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial‐temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light‐driven timer concept that could report relative protein ages at specific sub‐cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light‐driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible “ruler” for studying temporal hierarchy of spatially ordered processes with exquisite spatial‐temporal resolution. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Fluorescent biosensors constitute a class of imaging agents which have provided major insights into the function and regulation of enzymes in their cellular context. GFP-based reporters and genetically-encoded FRET biosensors, have been successfully applied to study protein kinases in living cells with high spatial and temporal resolution. In parallel, combined efforts in fluorescence chemistry and in chemical biology have enabled the design of non-genetic, polypeptide biosensors coupled to small synthetic fluorescent probes, which have been applied to monitor protein kinase activities in vitro and in more complex biological samples, with an equally successful outcome. From a biomedical perspective, fluorescent biosensor technology is well suited to development of diagnostic approaches, for monitoring disease progression and for evaluating response to therapeutics. Moreover it constitutes an attractive technology for drug discovery programs, for high content, high throughput screening assays, to assess the potency of new hits and optimize lead compounds, whilst also serving to characterize drugs developed through rational design. This review describes the utility and versatility of fluorescence biosensor technology to probe protein kinases with a specific focus on CDK/cyclin biosensors we have developed to probe abundance, activity and conformation. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

6.
Expanded fluorescent protein techniques employing photo-switchable and fluorescent timer proteins have become important tools in biological research. These tools allow researchers to address a major challenge in cell and developmental biology, namely obtaining kinetic information about the processes that determine the distribution and abundance of proteins in cells and tissues. This knowledge is often essential for the comprehensive understanding of a biological process, and/or required to determine the precise point of interference following an experimental perturbation.  相似文献   

7.
近几年,稀土上转换荧光纳米材料作为新型的荧光探针受到研究者的广泛关注,其优势在于光化学稳定性好、发射谱带窄、荧光寿命长、Stokes位移大等.同时,它利用近红外激光器作为激发光源,组织穿透能力好、对生物组织的损伤小、几乎没有背景荧光,使其应用于生物活体荧光成像成为可能.本文主要综述了最近稀土上转换荧光纳米材料在制备与生物应用方面的研究进展.  相似文献   

8.
橙色荧光蛋白——绿色荧光蛋白GFPxm的改造   总被引:3,自引:0,他引:3  
最近报道了从大型多管水母中分离出新的gfp基因。经大肠杆菌表达并纯化出的绿色荧光蛋白 (GFPxm)具有 4 76nm的激发峰和 4 96nm的发射峰 ,但是只能在低温下成熟的缺点限制了它的应用。这里进一步报道GFPxm的 12种突变型。在大肠杆菌中的表达结果表明 ,有 7种突变型在 37℃条件下产生高的荧光强度。在 2 5、32和 37℃条件下表达 6h ,GFPxm16、GFPxm18和GFPxm19的相对荧光强度均高于增强型绿色荧光蛋白 (EGFP) ,而GFPxm16和GFPxm16 3在 4 2℃高温表达时仍能保持高的荧光强度。这 7种突变型中的 4种在哺乳动物细胞中已获得良好表达。此外 ,有 6种突变型的荧光光谱红移 ,目前所达到的最长激发峰为 5 14nm、最长发射峰为 5 2 5nm。另外有 3种突变型具有包括紫外在内的两个激发峰 ,1种突变型只有单一的紫外激发峰。首次报道具有橙色荧光的突变型OFPxm ,它的激发峰为 5 0 9nm、发射峰为 5 2 3nm。 5 2 3nm属于黄绿色 ,但肉眼看到的蛋白为橙色。OFPxm在高温下可得到高水平表达且很好地成熟 ,但是因为低的量子产率而荧光强度相对较低。  相似文献   

9.
Three new fluorescent probes were synthesized for improving the method of studying donor-donor energy migration (DDEM). Each probe has two identical fluorescent 7-diethylaminocoumarin-3-carbonyl groups attached to a rigid bisteroid dodecacyclic spacer through additional inserts. In two probes, the inserts are β-Ala and L-Ser residues, which provide for a different nearest environment of the fluorophores. The third probe has identical β-Ala inserts.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 331–334.Original Russian Text Copyright © 2005 by Boldyrev, Molotkovsky.  相似文献   

10.
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.  相似文献   

11.
钙荧光探剂的研究及其在生命科学中的应用   总被引:8,自引:0,他引:8  
钙荧光探剂测量活细胞胞浆游离Ca2+浓度的方法在钙研究中已成为一种越来越重要的技术。特别是由于新的一代荧光探剂的合成和激光共聚焦显微镜的发展,使其应用更加广泛。由于国内使用这种技术的实验室逐渐增多,本文将系统介绍钙荧光探剂的发展、测量原理和方法、新的常用钙荧光探剂的比较及其在生命科学中的应用。  相似文献   

12.
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure.  相似文献   

13.
EosFP is a novel fluorescent protein from the stony coral Lobophyllia hemprichii. Its gene was cloned in Escherichia coli to express the tetrameric wild-type protein. The protein emits strong green fluorescence (516 nm) that shifts toward red (581 nm) upon near-ultraviolet irradiation at ∼390 nm due to a photo-induced modification that involves a break in the peptide backbone next to the chromophore. Using site-directed mutagenesis, dimeric (d1EosFP, d2EosFP) and monomeric (mEosFP) variants were produced with essentially unaltered spectroscopic properties. Here we present a spectroscopic characterization of EosFP and its variants, including room- and low-temperature spectra, fluorescence lifetime determinations, two-photon excitation and two-photon photoconversion. Furthermore, by transfection of a human cancer (HeLa) cell with a fusion construct of a mitochondrial targeting sequence and d2EosFP, we demonstrate how localized photoconversion of EosFP can be employed for resolving intracellular processes.  相似文献   

14.
15.
16.
We report the design and engineering of a robust, reagentless fluorescent glucose biosensor based on the periplasmic glucose-binding protein obtained from Thermotoga maritima (tmGBP). The gene for this protein was cloned from genomic DNA and overexpressed in Escherichia coli, the identity of its cognate sugar was confirmed, ligand binding was studied, and the structure of its glucose complex was solved to 1.7 Angstrom resolution by X-ray crystallography. TmGBP is specific for glucose and exhibits high thermostability (midpoint of thermal denaturation is 119 +/- 1 degrees C and 144 +/- 2 degrees C in the absence and presence of 1 mM glucose, respectively). A series of fluorescent conjugates was constructed by coupling single, environmentally sensitive fluorophores to unique cysteines introduced by site-specific mutagenesis at positions predicted to be responsive to ligand-induced conformational changes based on the structure. These conjugates were screened to identify engineered tmGBPs that function as reagentless fluorescent glucose biosensors. The Y13C*Cy5 conjugate is bright, gives a large response to glucose over concentration ranges appropriate for in vivo monitoring of blood glucose levels (1-30 mM), and can be immobilized in an orientation-specific manner in microtiter plates to give a reversible response to glucose. The immobilized protein retains its response after long-term storage at room temperature.  相似文献   

17.
A green fluorescent protein from the coral Dendronephthya sp. (Dend FP) is characterized by an irreversible light-dependent conversion to a red-emitting form. The molecular basis of this phenomenon was studied in the present work. Upon UV-irradiation at 366 nm, the absorption maximum of the protein shifted from 494 nm (the green form) to 557 nm (the red form). Concurrently, in the fluorescence spectra the emission maximum shifted from 508 to 575 nm. The green form of native Dend FP was shown to be a dimer, and the oligomerization state of the protein did not change during its conversion to the red form. By contrast, UV-irradiation caused significant intramolecular changes. Unlike the green form, which migrates in SDS-polyacrylamide gels as a single band corresponding to a full-length 28-kD protein, the red form of Dend FP migrated as two fragments of 18- and 10-kD. To determine the chemical basis of these events, the denatured red form of Dend FP was subjected to proteolysis with trypsin. From the resulting hydrolyzate, a chromophore-containing peptide was isolated by HPLC. The structure of the chromophore from the Dend FP red form was established by methods of ESI, tandem mass spectrometry (ESI/MS/MS), and NMR-spectroscopy. The findings suggest that the light-dependent conversion of Dend FP is caused by generation of an additional double bond in the side chain of His65 and a resulting extension of the conjugated system of the green form chromophore. Thus, classified by the chromophore structure, Dend FP should be referred to the Kaede subfamily of GFP-like proteins.  相似文献   

18.
19.
The thyroid gland accumulates iodide for the synthesis of thyroid hormones. The aim of the current study was to quantify iodide accumulation in cultured thyroid cells by live cell imaging using the halide-sensitive yellow fluorescent protein (YFP) variant YFP-H148Q/I152L. In vivo calibrations were performed in FRTL-5 thyrocytes to determine the sensitivity of YFP-H148Q/I152L to iodide. In the presence of ion-selective ionophores, YFP-H148Q/I152L fluorescence was suppressed by halides in a pH-dependent manner with 20-fold selectivity for iodide versus chloride and competition between the two halides. At a physiological pH of 7 and a chloride concentration of 15mM, the affinity constant of YFP-H148Q/I152L for iodide was 3.5mM. In intact FRTL-5 cells, iodide induced a reversible decrease in YFP-H148Q/I152L fluorescence. FRTL-5 cells concentrated iodide to 60 times the extracellular concentration. Iodide influx exhibited saturation kinetics with respect to extracellular iodide with a K(m) of 35 microM and a V(max) of 55 microM/s. Iodide efflux exhibited saturation kinetics with respect to intracellular iodide concentration with a K(m) of 2.2mM and a V(max) of 43 microM/s. The results of this study demonstrate the utility of YFP-H148Q/I152L as a sensitive and selective biosensor for the quantification of iodide accumulation in thyroid cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号