首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in cardiac actin (ACTC) have been associated with different cardiac abnormalities in humans, including dilated cardiomyopathy and septal defects. However, it is still poorly understood how altered ACTC structure affects cardiovascular physiology and results in the development of distinct congenital disorders. A zebrafish mutant (s434 mutation) was identified that displays blood regurgitation in a dilated heart and lacks endocardial cushion (EC) formation. We identified the mutation as a single nucleotide change in the alpha-cardiac actin 1a gene (actc1a), resulting in a Y169S amino acid substitution. This mutation is located at the W-loop of actin, which has been implicated in nucleotide sensing. Consequently, s434 mutants show loss of polymerized cardiac actin. An analogous mutation in yeast actin results in rapid depolymerization of F-actin into fragments that cannot reanneal. This polymerization defect can be partially rescued by phalloidin treatment, which stabilizes F-actin. In addition, actc1a mutants show defects in cardiac contractility and altered blood flow within the heart tube. This leads to downregulation or mislocalization of EC-specific gene expression and results in the absence of EC development. Our study underscores the importance of the W-loop for actin functionality and will help us to understand the structural and physiological consequences of ACTC mutations in human congenital disorders.  相似文献   

2.

Background

Mutations in the GARS gene have been identified in a small number of patients with Charcot-Marie-Tooth disease (CMT) type 2D or distal spinal muscular atrophy type V, for whom disease onset typically occurs during adolescence or young adulthood, initially manifesting as weakness and atrophy of the hand muscles. The role of GARS mutations in patients with inherited neuropathies in Taiwan remains elusive.

Methodology and Principal Findings

Mutational analyses of the coding regions of GARS were performed using targeted sequencing of 54 patients with molecularly unassigned axonal CMT, who were selected from 340 unrelated CMT patients. Two heterozygous mutations in GARS, p.Asp146Tyr and p.Met238Arg, were identified; one in each patient. Both are novel de novo mutations. The p.Asp146Tyr mutation is associated with a severe infantile-onset neuropathy and the p.Met238Arg mutation results in childhood-onset disability.

Conclusion

GARS mutations are an uncommon cause of CMT in Taiwan. The p.Asp146Tyr and p.Met238Arg mutations are associated with early-onset axonal CMT. These findings broaden the mutational spectrum of GARS and also highlight the importance of considering GARS mutations as a disease cause in patients with early-onset neuropathies.  相似文献   

3.
4.

Background

Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD).

Methods

We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucleotide polymorphism (SNP) array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.

Results

Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1.

Conclusions

Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.  相似文献   

5.

Purpose

This study was initiated to identify causal mutations responsible for autosomal recessive congenital cataracts in consanguineous familial cases.

Methods

Affected individuals underwent a detailed ophthalmological and clinical examination, and slit-lamp photographs were ascertained for affected individuals who have not yet been operated for the removal of the cataractous lens. Blood samples were obtained, and genomic DNA was extracted from white blood cells. A genome-wide scan was completed with short tandem repeat (STR) markers, and the logarithm of odds (LOD) scores were calculated. Protein coding exons of CRYAB were sequenced, bi-directionally. Evolutionary conservation was investigated by aligning CRYAB orthologues, and the expression of Cryab in embryonic and postnatal mice lens was investigated with TaqMan probe.

Results

The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis suggested a potential region on chromosome 11q23 harboring CRYAB. DNA sequencing identified a missense variation: c.34C>T (p.R12C) in CRYAB that segregated with the disease phenotype in the family. Subsequent interrogation of our entire cohort of familial cases identified a second familial case localized to chromosome 11q23 harboring a c.31C>T (p.R11C) mutation. In silico analyses suggested that the mutations identified in familial cases, p.R11C and p.R12C will not be tolerated by the three-dimensional structure of CRYAB. Real-time PCR analysis identified the expression of Cryab in mouse lens as early as embryonic day 15 (E15) that increased significantly until postnatal day 6 (P6) with steady level of expression thereafter.

Conclusion

Here, we report two novel missense mutations, p.R11C and p.R12C, in CRYAB associated with autosomal recessive congenital nuclear cataracts.  相似文献   

6.

Background

Ventricular septal defects (VSDs) are the most common and simplest type of congenital heart diseases (CHDs). Animal studies have suggested that the downregulation of Yes-associated protein 1 (YAP1) during embryonic development causes VSD-associated CHDs. However, how YAP1 contributes to isolated VSD (iVSD) is unclear.

Methods and Results

Twenty right atrial specimens were obtained from iVSD patients during routine congenital cardiac surgery and we assessed YAP1 expression in these specimens. For controls, six right atrial specimens were obtained from normal hearts of children without heart disease, three of whom died from cerebral palsy, and three who underwent heart transplants. YAP1 mRNA and protein levels and nuclear localization were significantly reduced in iVSD specimens compared to normal heart specimens. Concomitantly, mRNA levels of YAP1 downstream targets CTGF and AXL were also significantly decreased in iVSD specimens. Although Ki67-positive cardiomyocytes in iVSD specimens were comparable to normal heart specimens, Ki67-positive non-cardiomyocytes were significantly decreased.

Conclusions

YAP1 expression was markedly decreased in hearts of iVSD children. Given the important role of YAP1 during heart development, downregulation of YAP1 expression may contribute to iVSD and affect the proliferation of non-cardiomyocytes.  相似文献   

7.

Objectives

To investigate speech and language outcomes in children with cochlear implants (CIs) who had mutations in common deafness genes and to compare their performances with those without mutations.

Study Design

Prospective study.

Methods

Patients who received CIs before 18 years of age and had used CIs for more than 3 years were enrolled in this study. All patients underwent mutation screening of three common deafness genes: GJB2, SLC26A4 and the mitochondrial 12S rRNA gene. The outcomes with CIs were assessed at post-implant years 3 and 5 using the Categories of Auditory Performance (CAP) scale, Speech Intelligibility Rating (SIR) scale, speech perception tests and language skill tests.

Results

Forty-eight patients were found to have confirmative mutations in GJB2 or SLC26A4, and 123 without detected mutations were ascertained for comparison. Among children who received CIs before 3.5 years of age, patients with GJB2 or SLC26A4 mutations showed significantly higher CAP/SIR scores than those without mutations at post-implant year 3 (p = 0.001 for CAP; p = 0.004 for SIR) and year 5 (p = 0.035 for CAP; p = 0.038 for SIR). By contrast, among children who received CIs after age 3.5, no significant differences were noted in post-implant outcomes between patients with and without mutations (all p > 0.05).

Conclusion

GJB2 and SLC26A4 mutations are associated with good post-implant outcomes. However, their effects on CI outcomes may be modulated by the age at implantation: the association between mutations and CI outcomes is observed in young recipients who received CIs before age 3.5 years but not in older recipients.  相似文献   

8.

Introduction

The contribution of Gap junction beta-2 protein (GJB2) to the genetic load of deafness and its mutation spectra vary among different ethnic groups.

Objective

In this study, the mutation spectrum and audiologic features of patients with GJB2 mutations were evaluated with a specific focus on residual hearing.

Methods

An initial cohort of 588 subjects from 304 families with varying degrees of hearing loss were collected at the otolaryngology clinics of Seoul National University Hospital and Seoul National University Bundang Hospital from September 2010 through January 2014. GJB2 sequencing was carried out for 130 probands with sporadic or autosomal recessive non syndromic hearing loss. The audiograms were evaluated in the GJB2 mutants.

Results

Of the 130 subjects, 22 (16.9%) were found to carry at least one mutant allele of GJB2. The c.235delC mutation was shown to have the most common allele frequency (39.0%) among GJB2 mutations, followed by p.R143W (26.8%) and p.V37I (9.8%). Among those probands without the p.V37I allele in a trans configuration who showed some degree of residual hearing, the mean air conduction thresholds at 250 and 500 Hz were 57 dB HL and 77.8 dB HL, respectively. The c.235delC mutation showed a particularly wide spectrum of hearing loss, from mild to profound and significantly better hearing thresholds at 250 Hz and 2k Hz than in the non-p.V37I and non-235delC nonsyndromic hearing loss and deafness 1(DFNB1) subjects.

Conclusion

Despite its reputation as the cause of severe to profound deafness, c.235delC, the most frequent DFNB1 mutation in our cohort, caused a wide range of hearing loss with some residual hearing in low frequencies. This finding can be of paramount help for prediction of low frequency hearing thresholds in very young DFNB1 patients and highlights the importance of soft surgery for cochlear implantation in these patients.  相似文献   

9.

BACKGROUND:

The most common type of congenital heart disease is the cardiac septal defects, which has reported to be caused by a missense mutation (G296S) in exon 3 of the GATA4 gene.

AIMS:

The present study was undertaken to find out whether GATA4 gene is the prime cause of the septal defects in Mysore population.

MATERIALS AND METHODS:

GATA4 gene analyses were undertaken on 21 confirmed CHD cases by PCR and DNA sequencing.

RESULTS AND CONCLUSION:

Analysis of this particular mutation in 21 septal defect patients revealed that none of the patients had the mutation, indicating that this mutation is population specific or septal defect in Mysore population is caused due to mutations in other regions of the GATA4 gene.  相似文献   

10.

Background

Constitutive activation of nuclear factor κB (NF-κB) is a hallmark of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL). Mutations in the A20 gene activate NF-κB, but the prognostic value of A20 mutations in ABC-DLBLC is unclear.

Purpose

To investigate the prognostic value of A20 mutation in ABC-DLBCL patients.

Methods

The somatic mutation of A20 was investigated in 68 de novo ABC-DLBCLs by PCR/sequencing. The Kaplan-Meier method was used to estimate median overall survival (OS) and progression-free survival (PFS).

Results

The A20 mutation rate in ABC-DLBCL patients was 29.4%. Complete remission rates were 35% and 45.8% in patients with and without A20 mutations, respectively (P = 0.410). In patients with and without A20 mutations, the median OS was 24.0 and 30.6 months, respectively (P = 0.58), and the median PFS was 15 and 17.4 months, respectively (P = 0.52). None of the differences between the patient groups were significant.

Conclusions

Our findings suggested that the A20 mutation is a frequent event in ABC-DLBCLs. However, there was no significant difference in PFS and OS in patients with or without A20 mutations. Further study is required to completely exclude A20 somatic mutation as a prognostic marker in the ABC subtype of DLBLC.  相似文献   

11.

Background

A small group of patients with inherited neuropathy that has been shown to be caused by mutations in the BSCL2 gene. However, little information is available about the role of BSCL2 mutations in inherited neuropathies in Taiwan.

Methodology and Principal Findings

Utilizing targeted sequencing, 76 patients with molecularly unassigned Charcot-Marie-Tooth disease type 2 (CMT2) and 8 with distal hereditary motor neuropathy (dHMN), who were selected from 348 unrelated patients with inherited neuropathies, were screened for mutations in the coding regions of BSCL2. Two heterozygous BSCL2 mutations, p.S90L and p.R96H, were identified, of which the p.R96H mutation is novel. The p.S90L was identified in a pedigree with CMT2 while the p.R96H was identified in a patient with apparently sporadic dHMN. In vitro studies demonstrated that the p.R96H mutation results in a remarkably low seipin expression and reduced cell viability.

Conclusion

BSCL2 mutations account for a small number of patients with inherited neuropathies in Taiwan. The p.R96H mutation is associated with dHMN. This study expands the molecular spectrum of BSCL2 mutations and also emphasizes the pathogenic role of BSCL2 mutations in molecularly unassigned hereditary neuropathies.  相似文献   

12.

Objectives

The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients.

Materials and Methods

Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations.

Results

Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266).

Conclusion

Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients.  相似文献   

13.

Objective

To determine the pathogenesis of a patient born with congenital heart defects, who had appeared normal in prenatal screening.

Methods

In routine prenatal screening, G-banding was performed to analyse the karyotypes of the family and fluorescence in situ hybridization was used to investigate the 22q11.2 deletion in the fetus. After birth, the child was found to be suffering from heart defects by transthoracic echocardiography. In the following study, sequencing was used to search for potential mutations in pivotal genes. SNP-array was employed for fine mapping of the aberrant region and quantitative real-time PCR was used to confirm the results. Furthermore, other patients with a similar phenotype were screened for the same genetic variations. To compare with a control, these variations were also assessed in the general population.

Results

The child and his mother each had a region that was deleted in the beta-defensin repeats, which are usually duplicated in the general population. Besides, the child carried a SOX7-gene duplication. While this duplication was not detected in his mother, it was found in two other patients with cardiac defects who also had the similar deletion in the beta-defensin repeats.

Conclusion

The congenital heart defects of the child were probably caused by a SOX7-gene duplication, which may be a consequence of the partial haplotype of beta-defensin regions at 8p23.1. To our knowledge, this is the first congenital heart defect case found to have the haplotype of beta-defensin and the duplication of SOX7.  相似文献   

14.

Aims

To determine the prevalence and clinicopathological characteristics of BRAF V600E mutation and HER2 exon 20 insertions in Chinese lung adenocarcinoma (ADC) patients.

Methods

Given the fact that the driver mutations are mutually exclusive in lung ADCs, 204 EGFR/KRAS wild-type cases were enrolled in this study. Direct Sanger sequencing was performed to examine BRAF V600E and HER2 exon 20 mutations. The association of BRAF and HER2 mutations with clinicopathological characteristics was statistically analyzed.

Results

Among the 204 lung ADCs tested, 11 cases (5.4%) carried HER2 exon 20 insertions and 4 cases (2.0%) had BRAF V600E mutation. HER2 mutation status was identified to be associated with a non-smoking history (p<0.05). HER2 mutation occurs in 9.4% of never smokers (10/106), 8.7% of female (8/92) and 2.7% of male (3/112) in this selected cohort. All four BRAF mutated patients were women and three of them were never-smokers. No HER2 mutant patients harbor BRAF mutation.

Conclusions

HER2 and BRAF mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer and the availability of targeted therapy, Chinese lung ADC patients without EGFR and KRAS mutations are recommended for HER2 and BRAF mutations detection, especially for those never smokers.  相似文献   

15.

Purpose

To detect the causative mutation for congenital posterior polar cataracts in a five-generation Chinese family and further explore the potential pathogenesis of this disease.

Methods

Coding exons, with flanking sequences of five candidate genes, were screened using direct DNA sequencing. The identified mutations were confirmed by restriction fragment length polymorphism (RFLP) analysis. A full-length wild-type or an Y219* mutant aquaporin0 (AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected. Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were performed to determine protein expression levels and sub-cellular localization, respectively.

Results

We identified a novel nonsense mutation in MIP (c.657 C>G; p.Y219*) (major intrinsic protein gene) that segregates with congenital posterior polar cataract in a Chinese family. This mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected into HEK 293T cells, mRNA expression showed no significant difference between the wild-type and the mutant, while Y219*-AQP0 protein expression was significantly lower than that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane, while the mutated protein was abundant within the cytoplasm of HEK293T cells. However, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high fluorescence in the cytoplasm.

Conclusions

The novel nonsense mutation in the MIP gene (c.657 C>G) identified in a Chinese family may cause posterior polar cataracts. The dominant negative effect of the mutated protein on the wild-type protein interfered with the trafficking of wild-type protein to the cell membrane and both the mutant and wild-type protein were trapped in the cytoplasm. Consequently, both wild-type and mutant protein lost their function as a water channel on the cell membrane, and may result in a cataract phenotype. Our data also expands the spectrum of known MIP mutations.  相似文献   

16.
17.

Background

Nodal/TGF signaling pathway has an important effect at early stages of differentiation of human embryonic stem cells in directing them to develop into different embryonic lineages. SMAD3 is a key intracellular messenger regulating factor in the Nodal/TGF signaling pathway, playing important roles in embryonic and, particularly, cardiovascular system development. The aim of this work was to find evidence on whether SMAD3 variations might be associated with ventricular septal defects (VSD) or other congenital heart diseases (CHD).

Methods

We sequenced the SMAD3 gene for 372 Chinese Han CHD patients including 176 VSD patients and evaluated SNP rs2289263, which is located before the 5’UTR sequence of the gene. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0). The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE.

Results

Three heterozygous variants in SMAD3 gene, rs2289263, rs35874463 and rs17228212, were identified. Statistical analyses showed that the rs2289263 variant located before the 5’UTR sequence of SMAD3 gene was associated with the risk of VSD (P value=0.013 <0.05).

Conclusions

The SNP rs2289263 in the SMAD3 gene is associated with VSD in Chinese Han populations.  相似文献   

18.

Objective

To describe the epidemiology of birth defects (BDs) in perinatal infants in Hunan Province, China, between 2005 and 2014.

Methods

The BD surveillance data of perinatal infants (for stillbirth, dead fetus or live birth between 28 weeks of gestation and 7 days after birth) were collected from 52 registered hospitals of Hunan between 2005 and 2014. The prevalence rates of BDs with 95% confidence interval (CI) and crude odds ratio (ORs) were calculated to examine the associations of infant gender, maternal age, and region (urban vs rural) with BDs.

Results

From 2005 to 2014, there were a total of 925413 perinatal infants of which 17753 had BDs, with the average prevalence of 191.84 per 10000 PIs (perinatal infants), showing a significant uptrend. The risks of BDs are higher in urban areas versus rural areas (OR = 1.20), in male infants versus female infants (OR = 1.19), and in mothers above age 35 versus those below age 35 (OR = 1.24). The main five types of BDs are Congenital heart defects (CHD), Other malformation of external ear (OMEE), Polydactyly, Congenital malformation of kidney (CMK), and Congenital talipes equinovarus (CTE). From 2005 to 2014, the prevalence rates (per 10000 PIs) of CHD and CMK increased significantly from 22.56 to 74 (OR = 3.29, 95%CI: 2.65–4.11) and from 7.61 to 14.62 (OR = 1.92, 95%CI:1.30–2.84), respectively; the prevalence rates of congenital hydrocephalus and neural tube defects (NTDs) decreased significantly from 11.8 to 5.29 (OR = 0.45, 95%CI: 0.31–0.65) and from 7.87 to 1.74 (OR = 0.22, 95%CI: 0.13–0.38), respectively.

Conclusions

The prevalence rates of specific BDs in perinatal infants in Hunan have changed in the last decade. Urban pregnant women, male perinatal infants, and mothers above age 35 present different prevalence rates of BDs. Wider use of new diagnosis technology, improving the ability of monitoring, strengthening the publicity and education are important to reduce the prevalence of BDs.  相似文献   

19.

Objective

Epilepsy and intellectual/developmental disabilities (ID/DD) have a high rate of co-occurrence. Here, we investigated gene mutations in Chinese children with unexplained epilepsy and ID/DD.

Methods

We used targeted next-generation sequencing to detect mutations within 300 genes related to epilepsy and ID/DD in 253 Chinese children with unexplained epilepsy and ID/DD. A series of filtering criteria was used to find the possible pathogenic variations. Validation and parental origin analyses were performed by Sanger sequencing. We reviewed the phenotypes of patients with each mutated gene.

Results

We identified 32 novel and 16 reported mutations within 24 genes in 46 patients. The detection rate was 18% (46/253) in the whole group and 26% (17/65) in the early-onset (before three months after birth) epilepsy group. To our knowledge, we are the first to report KCNAB1 is a disease-causing gene of epilepsy by identifying a novel de novo mutation (c.1062dupCA p.Leu355HisfsTer5) within this gene in one patient with early infantile epileptic encephalopathy (EIEE). Patients with an SCN1A mutation accounted for the largest proportion, 17% (8/46). A total of 38% (9/24) of the mutated genes re-occurred at least 2 times and 63% (15/24) occurred only one time. Ion channel genes are the most common (8/24) and genes related to synapse are the next most common to occur (5/24).

Significance

We have established genetic diagnosis for 46 patients of our cohort. Early-onset epilepsy had the highest detection rate. KCNAB1 mutation was first identified in EIEE patient. We expanded the phenotype and mutation spectrum of the genes we identified. The mutated genes in this cohort are mostly isolated. This suggests that epilepsy and ID/DD phenotypes occur as a consequence of brain dysfunction caused by a highly diverse population of mutated genes. Ion channel genes and genes related to synapse were more common mutated in this patient cohort.  相似文献   

20.

Background and Purpose

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), caused by mutations in the NOTCH3 gene, is the most common monogenic disorder causing lacunar stroke and cerebral small vessel disease (SVD). Fabry disease (FD) due to mutations in the GLA gene has been suggested as an underdiagnosed cause of stroke, and one feature is SVD. Previous studies reported varying prevalence of CADASIL and FD in stroke, likely due to varying subtypes studied; no studies have looked at a large cohort of younger onset SVD. We determined the prevalence in a well-defined, MRI-verified cohort of apparently sporadic patients with lacunar infarct.

Methods

Caucasian patients with lacunar infarction, aged ≤70 years (mean age 56.7 (SD8.6)), were recruited from 72 specialist stroke centres throughout the UK as part of the Young Lacunar Stroke DNA Resource. Patients with a previously confirmed monogenic cause of stroke were excluded. All MRI’s and clinical histories were reviewed centrally. Screening was performed for NOTCH3 and GLA mutations.

Results

Of 994 subjects five had pathogenic NOTCH3 mutations (R169C, R207C, R587C, C1222G and C323S) all resulting in loss or gain of a cysteine in the NOTCH3 protein. All five patients had confluent leukoaraiosis (Fazekas grade ≥2). CADASIL prevalence overall was 0.5% (95% CI 0.2%-1.1%) and among cases with confluent leukoaraiosis 1.5% (95% CI 0.6%-3.3%). No classic pathogenic FD mutations were found; one patient had a missense mutation (R118C), associated with late-onset FD.

Conclusion

CADASIL cases are rare and only detected in SVD patients with confluent leukoaraiosis. No definite FD cases were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号