首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaplastic thyroid cancer (ATC) is a rare malignancy and has a poor prognosis due to its aggressive behavior and resistance to treatments. Calcium (Ca2+) serves as a ubiquitous cellular second messenger and influences several tumor behaviors. Therefore, Ca2+ modulation is expected to be a novel therapeutic target in cancers. However, whether Ca2+ modulation is effective in ATC therapy remains unknown. In this study, we reported that capsaicin (CAP), a transient receptor potential vanilloid type1 (TRPV1) agonist, inhibited the viability of anaplastic thyroid cancer cells. Capsaicin treatment triggered Ca2+ influx by TRPV1 activation, resulting in disequilibrium of intracellular calcium homeostasis. The rapidly increased cytosolic Ca2+ concentration was mirrored in the mitochondria and caused a severe condition of mitochondrial calcium overload in ATC cells. In addition, the disruption of mitochondrial calcium homeostasis caused by capsaicin led to mitochondrial dysfunction in ATC cells, as evidenced by the production of mitochondrial reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (ΔΨm), and opening of mitochondrial permeability transition pore (mPTP). Next, the resulting release of cyt c into the cytosol triggered apoptosome assembly and subsequent caspase activation and apoptosis. It was worth noting that both TRPV1 antagonist (capsazepine) and calcium chelator (BAPTA) could attenuate aberrant Ca2+ homeostasis, mitochondrial dysfunction and apoptosis induced by capsaicin treatment. Thus, our study demonstrated that capsaicin induced mitochondrial calcium overload and apoptosis in ATC cells through a TRPV1-mediated pathway. The better understanding of the anti-cancer mechanisms of calcium modulation provides a potential target for the ATC therapy.  相似文献   

2.
Current studies are focusing on the anti-cancerous properties of natural bioactive compounds, primarily those included in the human diet. These compounds have the potential to alter the redox balance that can hinder cancer cell's growth. In cancer cells, an abnormal rate of ROS production is balanced with higher antioxidant activities, which if not maintained, results in cancer cells being prone to cell death due to oxidative stress. Here, we have analyzed the effects of Chrysin and Capsaicin on the HeLa cells viability and cellular redox signaling. Both these compounds stimulate cellular and mitochondrial ROS overproduction that perturbs the cellular redox state and results in mitochondrial membrane potential loss. Apart from this, these compounds induce cell cycle arrest and induce premature senescence, along with the overexpression of p21, p53, and p16 protein at lower concentration treatment of Chrysin or Capsaicin. Moreover, at higher concentration treatment with these compounds, pro-apoptotic activity was observed with the high level of Bax and cleaved caspase-3 along with suppression of the Bcl-2 protein levels. In-Silico analysis with STITCH v5 also confirms the direct interaction of Chrysin and Capsaicin with target protein p53. This suggests that Chrysin and Capsaicin trigger an increase in mitochondrial ROS, and p53 interaction leading to premature senescence and apoptosis in concentration dependent manner and have therapeutic potential for cancer treatment.  相似文献   

3.
An ergostane type triterpenoid methylantcinate A (MAA) isolated from the fruiting bodies of Antrodia camphorata inhibited the growth of oral cancer cell lines OEC-M1 and OC-2 in a dose-dependent manner, without cytotoxic to normal oral gingival fibroblast cells. The major mechanism of growth inhibition was apoptosis induction, as shown by flow cytometric analysis of annexin V-FITC and propidium iodide staining, caspase-3 activation and DNA fragmentation. The increased expression of pro-apoptotic Bax, poly-(ADP-ribose) polymerase cleavage, and activated caspase-3 and decreased expression of anti-apoptotic Bcl-2 and Bcl-xL were also observed. These results provide the first evidence that the anti-oral cancer effects of MAA may involve a mechanism through the mitochondrial dependent pathway. Thus, results reported here may offer further impulse to the development of MAA analogues as potential chemotherapeutic targets for oral cancer complications.  相似文献   

4.
We investigated the apoptotic pathway activated by crambene (1-cyano-2-hydroxy-3-butene), a plant nitrile, on pancreatic acinar cells. As evidenced by annexin V-FITC staining, crambene treatment for 3 h induced the apoptosis but not necrosis of pancreatic acini. Caspase-3, -8, and -9 activities in acini treated with crambene were significantly higher than in untreated acini. Treatment with caspase-3, -8, and -9 inhibitors inhibited annexin V staining, as well as caspase-3 activity, pointing to an important role of these caspases in crambene-induced acinar cell apoptosis. The mitochondrial membrane potential was collapsed, and cytochrome c was released from the mitochondria in crambene-treated acini. Neither TNF-alpha nor Fas ligand levels were changed in pancreatic acinar cells after crambene treatment. These results provide evidence for the induction of pancreatic acinar cell apoptosis in vitro by crambene and suggest the involvement of mitochondrial pathway in pancreatic acinar cell apoptosis.  相似文献   

5.
Mitochondrial respiration, the key process behind cellular energy production, is critical for cell proliferation, growth and survival. However, the regulation of mitochondrial respiratory function in tumor cells is not well understood. In this study, we propose a model whereby tumor cells possess the capacity to fine-tune the balance between energy demands and mitochondrial reactive oxygen species (ROS) status, to maintain a milieu optimal for survival. This is achieved through the moderation of mitochondrial respiration, depending on the ROS context within the organelle, with the main players being Bcl-2 and cytochrome c oxidase (COX). We report a higher level of COX activity, oxygen consumption and mitochondrial respiration in tumor cells overexpressing Bcl-2. Transient overexpression, gene silencing and pharmacological inhibition of Bcl-2 corroborate these findings. Interestingly, Bcl-2 is also able to regulate mitochondrial respiration and COX activity in the face of mounting ROS levels, triggered by mitochondrial complex inhibitors. In this respect, it is plausible to suggest that Bcl-2 may be able to create an environment, most suited for survival by adjusting mitochondrial respiration accordingly to meet energy requirements, without incurring an overwhelming, detrimental increase in intracellular ROS.  相似文献   

6.
7.
《Cell reports》2023,42(9):113032
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

8.
Glycation of plasma proteins may contribute to an excess risk of developing atherosclerosis in patients with diabetes mellitus. Although it is believed that high-density lipoprotein (HDL) is nonenzymatically glycosylated at an increased level in diabetic individuals, little is known about a possible linkage between glycated HDL and endothelium dysfunction in diabetes. This study set out to clarify whether glucose-modified HDL affects the function of endothelial cells by examining the apoptosis of cultured human aortic endothelial cells (HAECs) exposed to a glycated-oxidized HDL (gly-ox-HDL) prepared in vitro. Incubation of HAECs with 100 microg/ml of gly-ox-HDL for 48 h showed apoptotic features, such as cell shrinkage, membrane blebbing, and concentration and fragmentation of the nucleus, and the degree of apoptosis was dose-dependent on the glucose used in the preparation of gly-ox-HDL. Stimulation of HAECs with gly-ox-HDL elicited a marked increase in caspase 3 activity and the expressions of active caspase 3 and caspase 9, whereas concomitant treatment with a caspase 3 inhibitor significantly blocked gly-ox-HDL-induced apoptosis of HAECs. The release of cytochrome c into cytosols markedly increased in HAECs during the treatment with gly-ox-HDL. The increased expressions of Bax and Bad were detected in HAECs incubated for 24 h with gly-ox-HDL, but gly-ox-HDL failed to interfere with the expression of Bcl-2 and Bcl-x. Moreover, in vitro experiments with HDL (gly-HDL) glycated in the presence of 2 mM EDTA and Cu(2+)-oxidized HDL suggested that the apoptotic effect of gly-ox-HDL on endothelial cells might be due to an additional oxidative modification of gly-HDL. Taken altogether, additional oxidation of HDL under hyperglycemic conditions may induce endothelial apoptosis through a mitochondrial dysfunction, following the deterioration of vascular function.  相似文献   

9.
The peptide hormone somatostatin, as well as the somatostatin analog octreotide, induces rapid morphological changes in neuroendocrine cells. The effect can be detected in less than 2 min: retraction fibers are formed, cells round up and cell-cell contacts are broken. Somatostatin-dependent cell contraction is inhibited by Y-27632, indicating that this effect is dependent on Rho kinase. In BON1 cells, the somatostatin-induced inhibition of forskolin-induced secretion of chromogranin A is not blocked by Y-27632. It is therefore concluded that the inhibitory effect of somatostatin in forskolin-stimulated cells is not dependent on cell contraction.  相似文献   

10.
Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A1R and A2AR) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.  相似文献   

11.
Rhein is an anthraquinone compound enriched in the rhizome of rhubarb, a traditional Chinese medicine herb showing anti-tumor promotion function. In this study, we first reported that rhein could induce apoptosis in human promyelocytic leukemia cells (HL-60), characterized by caspase activation, poly(ADP)ribose polymerase (PARP) cleavage, and DNA fragmentation. The efficacious induction of apoptosis was observed at 100 microM for 6h. Mechanistic analysis demonstrated that rhein induced the loss of mitochondrial membrane potential (DeltaPsi(m)), cytochrome c release from mitochondrion to cytosol, and cleavage of Bid protein. Rhein also induced generation of reactive oxygen species (ROS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. However, these actions seem not to be associated with the apoptosis induction because antioxidants including N-acetyl cysteine (NAC), Tiron, and catalase did not block rhein-induced apoptosis, although they could block the generation of ROS and the phosphorylation of JNK and p38 kinase. Our data demonstrate that rhein induces apoptosis in HL-60 cells via a ROS-independent mitochondrial death pathway.  相似文献   

12.
Matrine, as a member of Sophora family, is an alkaloid found in plants, and produces plethora pharmacological effects, including anti-cancer effects. However, the mechanism involved remains largely unknown. This study is conducted to investigate the anti-cancer mechanisms of matrine in human esophageal cancer in vitro and in vivo. In human esophageal cancer cell Eca-109, matrine significantly decreased the cell viability in a dose-dependent manner, and induced apoptosis as well as cell cycle arrest in G0/G1 phase by up-regulation of P53 and P21. The expression of several apoptosis-related proteins in cells and tumor tissues were evaluated by Western blot analysis. We found that matrine induced cell apoptosis by down-regulation of the ratio of BCL-2/BID and increasing activation of caspase-9. Further studies indicated that matrine induced apoptosis of Eca-109 was through the mitochondria-mediated internal pathway, but not by death receptor-mediated extrinsic apoptotic pathway, which was confirmed by the fact that Bid translocated from the nucleus to mitochondria during the process of the apoptosis induced by matrine. In vivo study found that matrine effectively inhibited the tumor formation of Eca-109 cells in nude mice. Our study suggests that matrine could serve as a potential novel agent from natural products to treat esophageal cancer.  相似文献   

13.
14.
《Free radical research》2013,47(8):936-949
Abstract

Mitochondrial DNA plays an important role in cellular sensitivity to cancer therapeutic agents. Hoechst 33342, a DNA minor groove binding ligand, has shown radiosensitizing effects in different cancer cell lines. In the present study, the possible binding of Hoechst 33342 with mitochondrial DNA, isolated from human cerebral glioma (BMG-1) cells, was investigated and consequences of this binding on excessive reactive oxygen species (ROS) generation in irradiated BMG-1 cells were studied. Alteration in the fluorescence spectroscopic characteristics of Hoechst 33342 suggested binding of Hoechst 33342 with isolated mitochondria and mitochondrial DNA. Persistent increase in level of ROS in the presence of Hoechst 33342 has been observed, which was further enhanced in irradiated cells. Investigations using inhibitors of ETC complex I suggested that mitochondrial bound Hoechst 33342 contributed to increased ROS, which was associated with alteration in ΔΨm and antioxidant machinery. These factors appeared to contribute in potentiating radiation-induced cell death in BMG-1 cells. The finding from these studies will be useful in designing better anti-cancer strategies.  相似文献   

15.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

16.
17.
During therapeutic hyperbaric oxygenation lymphocytes are exposed to high partial pressures of oxygen. This study aimed to analyze the mechanism of apoptosis induction by hyperbaric oxygen. For intervals of 0.5–4 h Jurkat-T-cells were exposed to ambient air or oxygen atmospheres at 1–3 absolute atmospheres. Apoptosis was analyzed by phosphatidylserine externalization, caspase-3 activation and DNA-fragmentation using flow cytometry. Apoptosis was already induced after 30 min of hyperbaric oxygenation (HBO, P < 0.05). The death receptor Fas was downregulated. Inhibition of caspase-9 but not caspase-8 blocked apoptosis induction by HBO. Hyperbaric oxygen caused a loss of mitochondrial membrane potential and caspase-9 induction. The mitochondrial pro-survival protein Bcl-2 was upregulated, and antagonizing Bcl-2 function potentiated apoptosis induction by HBO. In conclusion, a single exposure to hyperbaric oxygenation induces lymphocyte apoptosis by a mitochondrial and not a Fas-related mechanism. Regulation of Fas and Bcl-2 may be regarded as protective measures of the cell in response to hyperbaric oxygen.  相似文献   

18.
5'-Amino-4-imidazolecarboxamide (AICA) riboside induces apoptosis in neuronal cell models. In order to exert its effect, AICA riboside must enter the cell and be phosphorylated to the ribotide. In the present work, we have further studied the mechanism of apoptosis induced by AICA riboside. The results demonstrate that AICA riboside activates AMP-dependent protein kinase (AMPK), induces release of cytochrome c from mitochondria and activation of caspase 9. The role of AMPK in determining cell fate is controversial. In fact, AICA riboside has been reported to be neuroprotective or to induce apoptosis depending on its concentration, cell type or apoptotic stimuli used. In order to clarify whether the activation of AMPK is related to apoptosis in our model, we have used another AMPK stimulator, metformin, and we have analysed its effects on cell viability, nuclear morphology and AMPK activity. Five mM metformin increased AMPK activity, inhibited viability, and increased the number of apoptotic nuclei. AICA riboside, which can be generated from the ribotide (an intermediate of the purine de novo synthesis) by the action of the ubiquitous cytosolic 5'-nucleotidase (cN-II), may accumulate in those individuals in which an inborn error of purine metabolism causes both a building up of intermediates and/or an increase of the rate of de novo synthesis, and/or an overexpression of cN-II. Therefore, our results suggest that the toxic effect of AICA riboside on some types of neurons may participate in the neurological manifestations of syndromes related to purine dismetabolisms.  相似文献   

19.
Recent studies have focused on the anti-tumor activity of capsaicin. However, the potential effects of capsaicin in osteosarcoma cells and the underlying mechanisms are not fully understood. In the current study, we observed that capsaicin-induced growth inhibition and apoptosis in cultured osteosarcoma cells (U2OS and MG63), which were associated with a significant AMP-activated protein kinase (AMPK) activation. AMPK inhibition by compound C or RNA interference suppressed capsaicin-induced cytotoxicity, while AMPK activators (AICAR and A769662) promoted osteosarcoma cell death. For the mechanism study, we found that AMPK activation was required for capsaicin-induced mTORC1 (mTOR complex 1) inhibition, B cell lymphoma 2 (Bcl-2) downregulation and Bax upregulation in MG63 cells. Capsaicin administration induced p53 activation, mitochondrial translocation and Bcl-2 killer association, such effects were dependent on AMPK activation. Interestingly, we observed a significant pro-apoptotic c-Jun NH2-terminal kinases activation by capsaicin in MG63 cells, which appeared to be AMPK independent. In conclusion, capsaicin possessed strong efficacy against human osteosarcoma cells. Molecular studies revealed that capsaicin activated AMPK-dependent and AMPK-independent signalings to mediate cell apoptosis. The results of this study should have significant translational relevance in managing this deadly malignancy.  相似文献   

20.
Seki N  Shirasaki H  Kikuchi M  Himi T 《Life sciences》2007,80(17):1592-1597
Capsaicin, a type of alkaloid and the pungent component of chili peppers, is used as a therapeutic drug against allergic rhinitis and also as an index of bronchial hypersensitivity. Capsaicin receptor (TRPV1) expression has been identified in non-neuronal cells as well as neuronal cells. In our previous study, both TRPV1 protein and its gene expression on nasal epithelial cells were confirmed by immunohistochemistry and RT-PCR, respectively. In order to clarify whether or not TRPV1 acts as a functional receptor, we examined the effects of capsaicin on the production of IL-6 from primary cultured human airway epithelial cells at both protein and mRNA levels. Human nasal epithelial cells (HNECs) and normal human bronchial/tracheal epithelial cells (NHBE cells) were stimulated with increasing concentrations of capsaicin and/or pretreatment with capsazepine (TRPV1 antagonist) at 37 degrees C. The supernatant and total RNA were collected at 0, 4, 12, 24 and 48 h after treatment. IL-6 concentration and the IL-6 mRNA level were evaluated by ELISA and real-time PCR, respectively. Capsaicin (10 nM-10 muM) induced production of IL-6 from HNECs and NHBE cells and this effect was inhibited by pretreatment with capsazepine. Our findings suggest that topical application of capsaicin to the airway induces IL-6 production from respiratory epithelial cells via activation of TRPV1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号