首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders.  相似文献   

4.
AlphaPIX is a Rho GTPase guanine nucleotide exchange factor domain-containing signaling protein that associates with other proteins involved in cytoskeletal-membrane complexes. It has been shown that PIX proteins play roles in some immune cells, including neutrophils and T cells. In this study, we report the immune system phenotype of alphaPIX knockout mice. We extended alphaPIX expression experiments and found that whereas alphaPIX was specific to immune cells, its homolog betaPIX was expressed in a wider range of cells. Mice lacking alphaPIX had reduced numbers of mature lymphocytes and defective immune responses. Antigen receptor-directed proliferation of alphaPIX(-) T and B cells was also reduced, but basal migration was enhanced. Accompanying these defects, formation of T-cell-B-cell conjugates and recruitment of PAK and Lfa-1 integrin to the immune synapse were impaired in the absence of alphaPIX. Proximal antigen receptor signaling was largely unaffected, with the exception of reduced phosphorylation of PAK and expression of GIT2 in both T cells and B cells. These results reveal specific roles for alphaPIX in the immune system and suggest that redundancy with betaPIX precludes a more severe immune phenotype.  相似文献   

5.
Fibroblast growth factor (FGF) signal is implicated in not only cell proliferation, but cell migration and morphological changes. Several different Rho family GTPases downstream of the Ras/ERK pathway are postulated to mediate the latter functions. However, none have been recognized to be directly coupled to FGF receptors (FGFRs). We have previously reported that EphA4 and FGFRs hetero-oligomerize through their cytoplasmic domains, trans-activate each other, and transduce a signal for cell proliferation through a docking protein, FRS2alpha (Yokote, H., Fujita, K., Jing, X., Sawada, T., Liang, S., Yao, L., Yan, X., Zhang, Y., Schlessinger, J., and Sakaguchi, K. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 18866-18871). Here, we have found that ephexin1, a guanine nucleotide exchange factor for Rho family GTPases, constitutes another downstream component of the receptor complex. Ephexin1 directly binds to the kinase domain of FGFR mainly through its DH and PH domains. The binding appears to become weaker and limited to the DH domain when FGFRs become activated. FGFR-mediated phosphorylation of ephexin1 enhances the guanine nucleotide exchange activity toward RhoA without affecting the activity to Rac1 or Cdc42. The FGFR-mediated tyrosine phosphorylation includes, but is not limited to, the residue (Tyr-87) phosphorylated by Src family kinase, which is known to be activated following EphA4 activation. The Tyr-to-Asp mutations that mimic the tyrosine phosphorylation in some of the putative FGFR-mediated phosphorylation sites increase the nucleotide exchange activity for RhoA without changing the activity for Rac1 or Cdc42. From these results, we conclude that ephexin1 is located immediately downstream of the EphA4-FGFR complex and the function is altered by the FGFR-mediated tyrosine phosphorylation at multiple sites.  相似文献   

6.
The amyloid precursor protein (APP) is a key protein involved in the development of Alzheimer's disease. We previously identified a signal transduction secretory pathway in which the small G protein Rac sets downstream of the cAMP/Epac/Rap1 signalling cascade regulating the alpha cleavage of APP [Maillet, M. et al. (2003) Crosstalk between Rap and Rac regulates secretion of sAPP alpha. Nat. Cell Biol. 5, 633-639]. We now report that Rap1 can physically and specifically associate with the guanine nucleotide exchange factor (GEF) STEF through its TSS region. A deleted TSS domain of STEF cells fails to activate Rac1 and dramatically decreases secretion of the non-amyloidogenic soluble form of APP (sAPP alpha) induced by the cAMP-binding protein Epac. Altogether, our data show that upon Epac activation, Rap1 recruits STEF through its TSS region and activates Rac1, which mediates APP processing.  相似文献   

7.
Transfection of NIH3T3 cells with an osteosarcoma expression cDNA library led to the appearance of foci of morphologically transformed cells which were found to harbor a novel oncogene, ost. The ost product was activated by truncation of the N-terminal domain of the ost proto-oncogene and was highly tumorigenic in nude mouse assays. The proto-ost cDNA, isolated subsequently, encodes a predicted protein of 100 kDa containing DH (Db1 homology) and PH (pleckstrin homology) domains. Ost is mainly phosphorylated on serine and localized in the cytoplasm. Purified Ost protein catalyzed guanine nucleotide exchange on RhoA and Cdc42 among the Rho and Ras family members tested, indicating that Ost can activate these small GTP-binding proteins. Ost did not detectably associate with RhoA or Cdc42, but interacted specifically with the GTP-bound form of Rac1, suggesting that Ost can function as an effector of Rac1. These results suggest that Ost is a critical regulatory component which links pathways that signal through Rac1, RhoA and Cdc42. Of the tissues examined, expression of ost was the highest in brain and could be localized to neurons and alpha-tanycytes, suggesting that Ost may participate in axonal transport in these specialized cells.  相似文献   

8.
Human ARHGEF11, a PDZ-domain-containing Rho guanine nucleotide exchange factor (RhoGEF), has been studied primarily in tissue culture, where it exhibits transforming ability, associates with and modulates the actin cytoskeleton, regulates neurite outgrowth, and mediates activation of Rho in response to stimulation by activated Galpha12/13 or Plexin B1. The fruit fly homolog, RhoGEF2, interacts with heterotrimeric G protein subunits to activate Rho, associates with microtubules, and is required during gastrulation for cell shape changes that mediate epithelial folding. Here, we report functional characterization of a zebrafish homolog of ARHGEF11 that is expressed ubiquitously at blastula and gastrula stages and is enriched in neural tissues and the pronephros during later embryogenesis. Similar to its human homolog, zebrafish Arhgef11 stimulated actin stress fiber formation in cultured cells, whereas overexpression in the embryo of either the zebrafish or human protein impaired gastrulation movements. Loss-of-function experiments utilizing a chromosomal deletion that encompasses the arhgef11 locus, and antisense morpholino oligonucleotides designed to block either translation or splicing, produced embryos with ventrally-curved axes and a number of other phenotypes associated with ciliated epithelia. Arhgef11-deficient embryos often exhibited altered expression of laterality markers, enlarged brain ventricles, kidney cysts, and an excess number of otoliths in the otic vesicles. Although cilia formed and were motile in these embryos, polarized distribution of F-actin and Na(+)/K(+)-ATPase in the pronephric ducts was disturbed. Our studies in zebrafish embryos have identified new, essential roles for this RhoGEF in ciliated epithelia during vertebrate development.  相似文献   

9.
GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system.  相似文献   

10.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

11.
Vertebrate-striated muscle is assumed to owe its remarkable order to the molecular ruler functions of the giant modular signaling proteins, titin and nebulin. It was believed that these two proteins represented unique results of protein evolution in vertebrate muscle. In this paper we report the identification of a third giant protein from vertebrate muscle, obscurin, encoded on chromosome 1q42. Obscurin is approximately 800 kD and is expressed specifically in skeletal and cardiac muscle. The complete cDNA sequence of obscurin reveals a modular architecture, consisting of >67 intracellular immunoglobulin (Ig)- or fibronectin-3-like domains with multiple splice variants. A large region of obscurin shows a modular architecture of tandem Ig domains reminiscent of the elastic region of titin. The COOH-terminal region of obscurin interacts via two specific Ig-like domains with the NH(2)-terminal Z-disk region of titin. Both proteins coassemble during myofibrillogenesis. During the progression of myofibrillogenesis, all obscurin epitopes become detectable at the M band. The presence of a calmodulin-binding IQ motif, and a Rho guanine nucleotide exchange factor domain in the COOH-terminal region suggest that obscurin is involved in Ca(2+)/calmodulin, as well as G protein-coupled signal transduction in the sarcomere.  相似文献   

12.
13.
Vav1 is a hemopoietic-specific Rho/Rac guanine nucleotide exchange factor that plays a prominent role in responses to multisubunit immune recognition receptors in lymphoid cells, but its contribution to regulation of neutrophil functions is unknown. Activated Rho family GTPases are critical participants in neutrophil signaling cascades initiated by binding of FMLP and other chemoattractants to their cognate G protein-coupled receptors. Therefore, we investigated whether Vav1 regulates chemoattractant-induced responses in neutrophils. We found that superoxide production elicited by FMLP in Vav1(-/-) murine neutrophils isolated from either bone marrow or from peritoneal exudates was substantially reduced compared with that of wild type. Filamentous actin generation in FMLP-stimulated Vav1(-/-) neutrophils was also markedly reduced, whereas it was normal in response to IL-8 or leukotriene B(4). FMLP induced tyrosine phosphorylation of Vav1, whereas IL-8 or leukotriene B(4) did not, correlating with the requirement for Vav1 in chemoattractant-stimulated filamentous actin generation. Neutrophil motility in vitro and neutrophil mobilization into peripheral blood in vivo elicited by FMLP were both decreased in Vav1(-/-) mice. Hence, this study defines a new role for Vav1 in regulating granulocytic leukocytes as well as linking Vav1 to specific cellular responses downstream of a seven transmembrane domain receptor.  相似文献   

14.
Dong X  Mo Z  Bokoch G  Guo C  Li Z  Wu D 《Current biology : CB》2005,15(20):1874-1879
Leukocyte chemoattractants regulate many leukocyte functions, including leukocyte chemotaxis, via the Rho family of small GTPases that include RhoA, Cdc42, and Rac. Previous work has revealed mechanisms by which chemoattractants regulate RhoA and Cdc42 in mouse neutrophils, but the mechanisms for regulation of Rac remain unclear even though Rac is important for neutrophil functions. Here, we characterized P-Rex1, a Gbetagamma and PIP(3)-regulated guanine nucleotide exchange factor that was initially identified as a Rac activator in response to chemoattractants, for its roles in the regulation of Rac activity and neutrophil functions. We generated a mouse line in which the P-Rex1 gene is disrupted and found that P-Rex1 deficiency did not significantly affect Rac1 activation but diminished Rac2 activation in response to a chemoattractant fMLP in mouse neutrophils. This preference for Rac2 may partially result from the apparent higher affinity of P-Rex1 for Rac2 than for Rac1 because P-Rex1 was more readily immunoprecipitated with Rac2(S17N) than Rac1(S17N). In addition, P-Rex1 deficiency significantly attenuated fMLP-induced F actin formation and superoxide production without affecting LPS- or PMA-induced production. Furthermore, P-Rex1 deficiency caused a chemotactic defect that is primarily attributed to a reduction in the migration rate rather than directionality.  相似文献   

15.
We have conducted a genetic screen for mutations that decrease the effectiveness of signaling by a protein tyrosine kinase, the product of the Drosophila melanogaster sevenless gene. These mutations define seven genes whose wild-type products may be required for signaling by sevenless. Four of the seven genes also appear to be essential for signaling by a second protein tyrosine kinase, the product of the Ellipse gene. The putative products of two of these seven genes have been identified. One encodes a ras protein. The other locus encodes a protein that is homologous to the S. cerevisiae CDC25 protein, an activator of guanine nucleotide exchange by ras proteins. These results suggest that the stimulation of ras protein activity is a key element in the signaling by sevenless and Ellipse and that this stimulation may be achieved by activating the exchange of GTP for bound GDP by the ras protein.  相似文献   

16.
Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) with in vitro exchange activity specific for RhoA and Cdc42. Like many RhoGEF family members, the in vivo exchange activity of Dbs is restricted in a cell-specific manner. Here we report the characterization of a novel scaffold protein (designated cell cycle progression protein 1 [Ccpg1]) that interacts with Dbs and modulates its in vivo exchange specificity. When coexpressed in mammalian cells, Ccpg1 binds to the Dbl homology/pleckstrin homology domain tandem motif of Dbs and inhibits its exchange activity toward RhoA, but not Cdc42. Expression of Ccpg1 correlates with the ability of Dbs to activate endogenous RhoA in cultured cells, and suppression of endogenous Ccpg1 expression potentiates Dbs exchange activity toward RhoA. The isolated Dbs binding domain of Ccpg1 is not sufficient to suppress Dbs exchange activity on RhoA, thus suggesting a regulatory interaction. Ccpg1 mediates recruitment of endogenous Src kinase into Dbs-containing complexes and interacts with the Rho family member Cdc42. Collectively, our studies suggest that Ccpg1 represents a new class of regulatory scaffold protein that can function as both an assembly platform for Rho protein signaling complexes and a regulatory protein which can restrict the substrate utilization of a promiscuous RhoGEF family member.  相似文献   

17.
18.
19.
Members of the guanine exchange factor (GEF) family of scaffold proteins are involved in the integration of signal flow downstream of many receptors in adaptive immunity. However, the full complement of GEFs that function downstream of Toll-like receptors (TLRs) requires further identification and functional understanding. By systematically integrating expression profiles from immune and epithelial cells with functional studies, we demonstrate that protein kinase A anchoring protein 13 (AKAP13), a scaffold protein with GEF activity, is an activator of NF-kappaB downstream of TLR2 signaling. Stimulation of the human macrophage cell line THP-1 and epithelial cells with a TLR2 ligand caused a significant up-regulation in AKAP13 mRNA, corresponding to an increase in protein expression. Analysis of TLR2 reporter cell lines deficient in AKAP13 expression revealed significantly reduced NF-kappaB activation and reduced secretion of interleukin-8 and MCP-1 in response to specific ligand stimulation. Furthermore, NF-kappaB activation was partially inhibited by a GEF-deficient AKAP13 mutant. AKAP13 was also involved in phosphorylation of JNK but not of extracellular signal-regulated kinase ERK1 and -2 following ligand stimulation. Together, our results suggest that AKAP13 plays a role in TLR2-mediated NF-kappaB activation and suggest that GEF-containing scaffold proteins may confer specificity to innate immune responses downstream of TLRs.  相似文献   

20.
Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor   总被引:3,自引:0,他引:3  
ALS2 is the gene mutated in a recessive juvenile form of amyotrophic lateral sclerosis (ALS2). ALS2 encodes a large protein termed alsin, which contains a number of predicted cell signaling and protein trafficking sequence motifs. To gain insight into the overall function of alsin and to begin to evaluate its role in motor neuron maintenance, we examined the subcellular localization of alsin and the biochemical activities associated with its individual subdomains. We found that the Vps9p domain of alsin has Rab5 guanine nucleotide exchange activity. In addition, alsin interacted specifically with and acted as a guanine nucleotide exchange factor for Rac1. Immunofluorescence and fractionation experiments in both fibroblasts and neurons revealed that alsin is a cytosolic protein, with a significant portion associated with small, punctate membrane structures. Many of these membrane structures also contained Rab5 or Rac1. Upon overexpression of full-length alsin, the overexpressed material was largely cytosolic, indicating that the association with membrane structures could be saturated. We also found that alsin was present in membrane ruffles and lamellipodia. These data suggest that alsin is involved in membrane transport events, potentially linking endocytic processes and actin cytoskeleton remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号