首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gram‐negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σE envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two‐component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram‐negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σE envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σE and Cpx responses in non‐pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σE response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K‐12. Cpx pathway activation resulted in part from overexpression of the bundle‐forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.  相似文献   

2.
Bacteriophage SPN1S infects the pathogenic Gram‐negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane‐permeabilized Gram‐negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram‐negative bacteria background, the α‐helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane‐permeabilized Escherichia coli. The three‐helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane‐permeabilized E. coli and was therefore proposed as the peptidoglycan‐binding domain. These structural and functional features suggest that endolysin from a Gram‐negative bacterial background has peptidoglycan‐binding activity and performs glycoside hydrolase activity through the catalytic dyad.  相似文献   

3.
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies.  相似文献   

4.
5.
Many intracellular bacterial pathogens possess virulence factors that prevent detection and killing by macrophages. However, similar virulence factors in non-pathogenic bacteria are less well-characterized and may contribute to the pathogenesis of chronic inflammatory conditions such as Crohn’s disease. We hypothesize that the small heat shock proteins IbpAB, which have previously been shown to reduce oxidative damage to proteins in vitro and be upregulated in luminal non-pathogenic Escherichia strain NC101 during experimental colitis in vivo, protect commensal E. coli from killing by macrophage-derived reactive oxygen species (ROS). Using real-time PCR, we measured ibpAB expression in commensal E. coli NC101 within wild-type (wt) and ROS-deficient (gp91phox-/-) macrophages and in NC101 treated with the ROS generator paraquat. We also quantified survival of NC101 and isogenic mutants in wt and gp91phox-/- macrophages using gentamicin protection assays. Similar assays were performed using a pathogenic E. coli strain O157:H7. We show that non-pathogenic E. coli NC101inside macrophages upregulate ibpAB within 2 hrs of phagocytosis in a ROS-dependent manner and that ibpAB protect E. coli from killing by macrophage-derived ROS. Moreover, we demonstrate that ROS-induced ibpAB expression is mediated by the small E. coli regulatory RNA, oxyS. IbpAB are not upregulated in pathogenic E. coli O157:H7 and do not affect its survival within macrophages. Together, these findings indicate that ibpAB may be novel virulence factors for certain non-pathogenic E. coli strains.  相似文献   

6.
We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram‐positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12‐transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ~ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram‐positive and Gram‐negative bacteria.  相似文献   

7.
Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N‐terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N‐terminal extension that is not present in most Gram‐negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N‐terminal extension, which performs post‐translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram‐negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.  相似文献   

8.
Enteroinvasive Escherichia coli (EIEC), heat-labile enterotoxin (LT) E. coli, Shigella spp., and Salmonella spp. are common enteric pathogens, which cause food-borne diseases if consumed in contaminated milk products. The rapid and reliable methods for detecting are imperative for reduction in hazard of infection. In this study, we selected primers, optimized the polymerase chain reaction (PCR) conditions, and analyzed the sensitivity and specificity of the multiplex PCR assay to screen raw milk from these enteric bacteria. Furthermore, EIEC, LT-E. coli, Shigella spp., Salmonella spp., and 11 non-targeted pathogenic strains were performed for the specificity of the multiplex PCR. Specific bands showed in EIEC, LT-E. coli, Shigella spp., and Salmonella spp. but no bands showed in other 11 pathogenic strains. The sensitivity of multiplex PCR was relatively high, was rounded to 200 CFU/ml (Shigella spp. and EIEC), 320 CFU/ml (Salmonella spp.), and 100 CFU/ml (LT-E. coli). This method for simultaneous and rapid detection of enteric pathogens (EIEC, LT-E. coli, Shigella spp., and Salmonella spp.) in raw milk showed high sensitivity and specificity, and led to faster track to report results.  相似文献   

9.
Most Gram‐negative organisms produce lipopolysaccharide (LPS), a complex macromolecule anchored to the bacterial membrane by the lipid A moiety. Lipid A is synthesized via the Raetz pathway, a conserved nine‐step enzymatic process first characterized in Escherichia coli. The Epsilonproteobacterium Helicobacter pylori uses the Raetz pathway to synthesize lipid A; however, only eight of nine enzymes in the pathway have been identified in this organism. Here, we identify the missing acyltransferase, Jhp0255, which transfers a secondary acyl chain to the 3′‐linked primary acyl chain of lipid A, an activity similar to that of E. coli LpxM. This enzyme, reannotated as LpxJ due to limited sequence similarity with LpxM, catalyses addition of a C12:0 or C14:0 acyl chain to the 3′‐linked primary acyl chain of lipid A, complementing an E. coli LpxM mutant. Enzymatic assays demonstrate that LpxJ and homologues in Campylobacter jejuni and Wolinella succinogenes can act before the 2′ secondary acyltransferase, LpxL, as well as the 3‐deoxy‐d ‐manno‐octulosonic acid (Kdo) transferase, KdtA. Ultimately, LpxJ is one member of a large class of acyltransferases found in a diverse range of organisms that lack an E. coli LpxM homologue, suggesting that LpxJ participates in lipid A biosynthesis in place of an LpxM homologue.  相似文献   

10.
We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.Key words: Escherichia coli, commensal, human gut, genome sequencing  相似文献   

11.
Solid-Phase Capture of Proteins, Spores, and Bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Current methods for the detection of pathogens in food and water samples generally require a preenrichment step that allows selective enrichment of the test organism. The objective of this research was to eliminate an enrichment step to allow detection of bacteria directly in food and water samples in 30 min. A high-flow-rate, fluidized bed to capture and concentrate large (bacteria and spores) and small (protein) molecules was developed. This format, ImmunoFlow, is volume independent and uses large beads (greater than 3 mm in diameter) when capturing bacteria to prevent sample clogging when testing food samples. Detection of bound targets was done using existing enzyme-linked immunosorbent assay (ELISA) protocols. Four antibodies (anti-Escherichia coli O157:H7, -Bacillus globigii, -bovine serum albumin [BSA], and -ovalbumin [OVA]) were covalently coupled to various glass and ceramic beads. Very small amounts of BSA (<1 ng) and OVA (0.2 to 4.0 μg) were detected. Various industrial and environmental samples were used to observe the effect of the sample composition on the capture of anti-B. globigii and anti-E. coli O157:H7 modified beads. The lower limit of detection for both E. coli O157:H7 and B. globigii was 1 spore/cell independent of the sample size. The activity of anti-B. globigii modified beads declined after 3 days. Anti-E. coli O157:H7 modified beads declined in their capture ability after 2 days in various storage buffers. Storage temperature (4 and 25°C) did not influence the stability. The ImmunoFlow technology is capable of capturing bacteria and spores directly from samples, with subsequent detection in an ELISA format in 30 min.  相似文献   

12.
We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy.  相似文献   

13.
Actinobacteria, which are the prolific producers of antibiotics and significant suppliers to the pharmaceutical industry, can produce a wide variety of bioactive metabolites. An actinomycete strain designated NLKPB45 was isolated from mangrove soils samples of Nellore coastal regions Andhra Pradesh and assessed for antibiotic production and activity against pathogenic bacteria. From a total of 9 mangrove soil samples, 143 acinomycetes were isolated. Among the isolated them 6 actinomycetes strains showed potential antibacterial activity against at two tested pathogens gram positive and gram negative bacteria E. coli and S. aureus. The potent strain NLKPB45 was identified by 16S gene isolation and sequencing to the Streptomyces genus. The ethyl acetate extracts also as shown excellent antimicrobial activity against Salmonella sp., staphylococcus aureus, E. coli, and B. subtilus were detected in both the supernatant extract samples from fermentations of culture NLKPB45. The anticancer activity of extracts in the HeLa with IC50 value of 37.1924 μg/ml, MCF-7 IC50 value of 40.9177 μg/ml and HT 29 IC50 value of 43.3758 μg/ml.  相似文献   

14.
Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.  相似文献   

15.
Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.  相似文献   

16.
Lipid A coats the outer surface of the outer membrane of Gram‐negative bacteria. In Francisella tularensis subspecies novicida lipid A is present either as the covalently attached anchor of lipopolysaccharide (LPS) or as free lipid A. The lipid A moiety of Francisella LPS is linked to the core domain by a single 2‐keto‐3‐deoxy‐D‐manno‐octulosonic acid (Kdo) residue. F. novicida KdtA is bi‐functional, but F. novicida contains a membrane‐bound Kdo hydrolase that removes the outer Kdo unit. The hydrolase consists of two proteins (KdoH1 and KdoH2), which are expressed from adjacent, co‐transcribed genes. KdoH1 (related to sialidases) has a single predicted N‐terminal transmembrane segment. KdoH2 contains 7 putative transmembrane sequences. Neither protein alone catalyses Kdo cleavage when expressed in E. coli. Activity requires simultaneous expression of both proteins or mixing of membranes from strains expressing the individual proteins under in vitro assay conditions in the presence of non‐ionic detergent. In E. coli expressing KdoH1 and KdoH2, hydrolase activity is localized in the inner membrane. WBB06, a heptose‐deficient E. coli mutant that makes Kdo2‐lipid A as its sole LPS, accumulates Kdo‐lipid A when expressing the both hydrolase components, and 1‐dephospho‐Kdo‐lipid A when expressing both the hydrolase and the Francisella lipid A 1‐phosphatase (LpxE).  相似文献   

17.
Bordetella avium is a Gram negative upper respiratory tract pathogen of birds. B. avium infection of commercially raised turkeys is an agriculturally significant problem. Here we describe the functional analysis of the first characterized B. avium autotransporter protein, Baa1. Autotransporters comprise a large family of proteins found in all groups of Gram negative bacteria. Although not unique to pathogenic bacteria, autotransporters have been shown to perform a variety of functions implicated in virulence. To test the hypothesis that Baa1 is a B. avium virulence factor, unmarked baa1 deletion mutants (Δbaa1) were created and tested phenotypically. It was found that baa1 mutants have wild-type levels of serum sensitivity and infectivity, yet significantly lower levels of turkey tracheal cell attachment in vitro. Likewise, semi-purified recombinant His-tagged Baa1, expressed in Escherichia coli, was shown to bind specifically to turkey tracheal cells via western blot analysis. Taken together, we conclude that Baa1 acts as a host cell attachment factor and thus plays a role B. avium virulence.  相似文献   

18.
Seabirds may be responsible for the spread of pathogenic/resistant organisms over great distances, playing a relevant role within the context of the One World, One Health concept. Diarrheagenic E. coli strains, known as STEC (shiga toxin-producing E. coli), and the extraintestinal pathogenic E. coli (ExPEC and the subpathotype APEC), are among the E. coli pathotypes with zoonotic potential associated with the birds. In order to identify health threats carried by frigates and to evaluate the anthropic influence on the southern coast of Brazil, the aim of this work was to characterize E. coli isolated from free-ranging frigates in relation to virulence genotypes, serotypes, phylogenetic groups and antimicrobial resistance. Cloacal and choanal swabs were sampled from 38 Fregata magnificens from two oceanic islands and one rescue center. Forty-three E. coli strains were recovered from 33 out of the 38 birds (86.8%); 88.4% of strains showed some of the virulence genes (VGs) searched, 48.8% contained three or more VGs. None of the strains presented VGs related to EPEC/STEC. Some of the isolates showed virulence genotypes, phylogenetic groups and serotypes of classical human ExPEC or APEC (O2:H7, O1:H6, ONT:H7, O25:H4). Regarding antimicrobial susceptibility, 62.8% showed resistance, and 11.6% (5/43) were multidrug-resistant. The E. coli present in the intestines of the frigates may reflect the environmental human impact on southeast coast of Brazil; they may also represent an unexplored threat for seabird species, especially considering the overlap of pathogenic potential and antimicrobial resistance present in these strains.  相似文献   

19.
Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.  相似文献   

20.
Ferulic, p-coumaric, and caffeic acids are phenolic acids present in soil, food, and gut, which have antimicrobial effects. Some Gram (+) bacteria metabolize these phenolic acids into vinyl derivatives due to phenolic acid decarboxylase activity (PAD) involved in the phenolic acid stress response (PASR). In this study, the antimicrobial activity of phenolic acids and their vinyl derivatives was tested on a panel of desirable and undesirable food-borne bacteria, especially Gram (?) species of Salmonella, Enterobacter, Klebsiella, and Pseudomonas, most of them without PAD activity. Native and engineered Escherichia coli strains either expressing or not PAD activity were included. Gram (?) bacteria of the panel were not significantly inhibited by phenolic acids at 3 mM, but were dramatically inhibited by the corresponding vinyl derivatives. On the contrary, Gram (+) bacteria displaying the PASR face the toxicity of phenolic acids by PAD activity and are not inhibited by vinyl phenols. In E. coli, the genes aaeB and marA, encoding efflux pumps for antimicrobial compounds, are upregulated by the addition of p-coumaric acid, but not by its derivative 4-vinyl phenol (p-hydroxystyrene). These results suggest that phenolic acids and their vinyl phenol derivatives produced by PAD (+) species could have a significant impact on undesirable or pathogenic food-borne Gram (?) bacteria in complex microbial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号