首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is accumulating evidence that the specificity of the transduction cascades activated by G protein-coupled receptors cannot solely depend on the nature of the coupled G protein. To identify additional structural determinants, we studied two metabotropic glutamate (mGlu) receptors, the mGlu2 and mGlu7 receptors, that are both coupled to G(o) proteins but are known to affect different effectors in neurons. Thus, the mGlu2 receptor selectively blocks N- and L-type Ca(2+) channels via a protein kinase C-independent pathway, whereas the mGlu7 receptor selectively blocks P/Q-type Ca(2+) channels via a protein kinase C-dependent pathway, and both effects are pertussis toxin-sensitive. We examined the role of the C-terminal domain of these receptors in this coupling. Chimeras were constructed by exchanging the C terminus of these receptors and transfected into neurons. Different chimeric receptors bearing the C terminus of mGlu7 receptor blocked selectively P/Q-type Ca(2+) channels, whereas chimeras bearing the C terminus of mGlu2 receptor selectively blocked N- and L-type Ca(2+) channels. These results show that the C terminus of mGlu2 and mGlu7 receptors is a key structural determinant that allows these receptors to select a specific signaling pathway in neurons.  相似文献   

2.
Recently, evidence has emerged that seven transmembrane G protein-coupled receptors may be present as homo- and heteromers in the plasma membrane. Here we describe a new molecular and functional interaction between two functionally unrelated types of G protein-coupled receptors, namely the metabotropic glutamate type 1alpha (mGlu(1alpha) receptor) and the adenosine A1 receptors in cerebellum, primary cortical neurons, and heterologous transfected cells. Co-immunoprecipitation experiments showed a close and subtype-specific interaction between mGlu(1alpha) and A1 receptors in both rat cerebellar synaptosomes and co-transfected HEK-293 cells. By using transiently transfected HEK-293 cells a synergy between mGlu(1alpha) and A1 receptors in receptor-evoked [Ca(2+)](i) signaling has been shown. In primary cultures of cortical neurons we observed a high degree of co-localization of the two receptors, and excitotoxicity experiments in these cultures also indicate that mGlu(1alpha) and A1 receptors are functionally related. Our results provide a molecular basis for adenosine/glutamate receptors cross-talk and open new perspectives for the development of novel agents to treat neuropsychiatric disorders in which abnormal glutamatergic neurotransmission is involved.  相似文献   

3.
Metabotropic glutamate receptor 1 (mGlu1) is a G protein-coupled receptor that enhances the hydrolysis of membrane phosphoinositides. In addition to its role in synaptic transmission and plasticity, mGlu1 has been shown to be involved in neuroprotection and neurodegeneration. In this capacity, we have reported previously that in neuronal cells, mGlu1a exhibits the properties of a dependence receptor, inducing apoptosis in the absence of glutamate, while promoting neuronal survival in its presence (Pshenichkin, S., Dolińska, M., Klauzińska, M., Luchenko, V., Grajkowska, E., and Wroblewski, J. T. (2008) Neuropharmacology 55, 500–508). Here, using CHO cells expressing mGlu1a receptors, we show that the protective effect of glutamate does not rely on the classical mGlu1 signal transduction. Instead, mGlu1a protective signaling is mediated by a novel, G protein-independent, pathway which involves the activation of the MAPK pathway and a sustained phosphorylation of ERK, which is distinct from the G protein-mediated transient ERK phosphorylation. Moreover, the sustained phosphorylation of ERK and protective signaling through mGlu1a receptors require expression of β-arrestin-1, suggesting a possible role for receptor internalization in this process. Our data reveal the existence of a novel, noncanonical signaling pathway associated with mGlu1a receptors, which mediates glutamate-induced protective signaling.  相似文献   

4.
Metabotropic glutamate receptors (mGluR) are present in cells of the nervous system, where they are activated by one of the main neurotransmitters, glutamate. They are also expressed in cells outside the nervous system. We identified and characterized two receptors belonging to group I mGluR, mGlu1R and mGlu5R, in human cell lines of lymphoid origin and in resting and activated lymphocytes from human peripheral blood. Both are highly expressed in the human Jurkat T cell line, whereas mGlu5R is expressed only in the human B cell line SKW6.4. In blood lymphocytes, mGlu5R is expressed constitutively, whereas mGlu1R is expressed only upon activation via the T cell receptor-CD3 complex. Group I receptors in the central nervous system are coupled to phospholipase C, whereas in blood lymphocytes, activation of mGlu5R does not trigger this signaling pathway, but instead activates adenylate cyclase. On the other hand, mGlu5R does not mediate ERK1/2 activation, whereas mGlu1R, which is coupled neither to phospholipase C nor to calcium channels and whose activation does not increase cAMP, activates the mitogen-activated protein kinase cascade. The differential expression of mGluR in resting and activated lymphocytes and the different signaling pathways that are triggered when mGlu1Rs or mGlu5Rs are activated point to a key role of glutamate in the regulation of T cell physiological function. The study of the signaling pathways (cAMP production and ERK1/2 phosphorylation) and the proliferative response obtained in the presence of glutamate analogs suggests that mGlu1R and mGlu5R have distinct functions. mGlu5R mediates the reported inhibition of cell proliferation evoked by glutamate, which is reverted by the activation of inducible mGlu1R. This is a novel non-inhibitory action mechanism for glutamate in lymphocyte activation. mGlu1R and mGlu5R thus mediate opposite glutamate effects in human lymphocytes.  相似文献   

5.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   

6.
The Group I metabotropic glutamate receptor (mGlu1) plays an important role in neuromodulation, development, and synaptic plasticity. Using immunocytochemistry, subcellular fractionation, and western blot analysis, the present study shows that mGlu1a receptors are present on nuclear membranes in stably transfected human embryonic kidney 293 (HEK293) cells as well as being endogenously expressed on rat cortical nuclei. Both glutamate and the group I agonist, quisqualate, directly activate nuclear mGlu1 receptors leading to a characteristic oscillatory pattern of calcium flux in isolated HEK nuclei and a slow rise to plateau in isolated cortical nuclei. In either case calcium responses could be terminated upon application of the mGlu1-selective antagonist, 7-(hydroxyamino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. Responses could also be blocked by ryanodine and inositol 1,4,5-triphosphate receptor inhibitors, demonstrating the involvement of these calcium channels. Agonist activation of intracellular receptors was driven by Na(+)-dependent and -independent processes in nuclei isolated from either HEK or cortical neurons. Finally, mGlu1 nuclear receptors were dramatically up-regulated in the course of post-natal development. Therefore, like the other Group I receptor, mGlu5, mGlu1 can function as an intracellular receptor, suggesting a more encompassing role for nuclear G protein-coupled receptors and downstream signaling elements in the regulation of nuclear events.  相似文献   

7.
In the mammalian brain, a majority of excitatory synapses use glutamate as a neurotransmitter. Glutamate activates ligand-gated channels (ionotropic receptors) and G protein-coupled (metabotropic) receptors. During the past decade, a number of intracellular proteins have been described to interact with these receptors. These proteins not only scaffold the glutamate receptors at the pre- and post-synaptic membranes, but also regulate their subcellular targeting and intracellular signaling. Thus, identification of these proteins has been essential for further understanding the functions of glutamate receptors. Here we will focus on those proteins that interact with the subgroup of metabotropic glutamate (mGlu) receptors, and review the methods used for their identification, as well as their functional roles in neurons.  相似文献   

8.
Regulation of neurotransmitter release by metabotropic glutamate receptors   总被引:25,自引:0,他引:25  
The G protein-coupled metabotropic glutamate (mGlu) receptors are differentially localized at various synapses throughout the brain. Depending on the receptor subtype, they appear to be localized at presynaptic and/or postsynaptic sites, including glial as well as neuronal elements. The heterogeneous distribution of these receptors on glutamate and nonglutamate neurons/cells thus allows modulation of synaptic transmission by a number of different mechanisms. Electrophysiological studies have demonstrated that the activation of mGlu receptors can modulate the activity of Ca(2+) or K(+) channels, or interfere with release processes downstream of Ca(2+) entry, and consequently regulate neuronal synaptic activity. Such changes evoked by mGlu receptors can ultimately regulate transmitter release at both glutamatergic and nonglutamatergic synapses. Increasing neurochemical evidence has emerged, obtained from in vitro and in vivo studies, showing modulation of the release of a variety of transmitters by mGlu receptors. This review addresses the neurochemical evidence for mGlu receptor-mediated regulation of neurotransmitters, such as excitatory and inhibitory amino acids, monoamines, and neuropeptides.  相似文献   

9.
The enteric nervous system (ENS) contains functional ionotropic and group I metabotropic glutamate (mGlu) receptors. In this study, we determined whether enteric neurons express group II mGlu receptors and the effects of mGlu receptor activation on voltage-gated Ca(2+) currents in these cells. (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), a group II mGlu receptor agonist, reversibly suppressed the Ba(2+) current in myenteric neurons isolated from the guinea pig ileum. Significant inhibition was also produced by L-glutamate and the group II mGlu receptor agonists, (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) and (2S,1'S,2'S)-2-(2-carboxycyclopropyl)glycine (L-CCG-I), with a rank order potency of 2R,4R-APDC > DCG-IV > L-glutamate > L-CCG-I, and was reduced by the group II mGlu receptor antagonist LY-341495. Pretreatment of neurons with pertussis toxin (PTX) reduced the action of mGlu receptor agonists, suggesting participation of G(i)/G(o) proteins. Finally, omega-conotoxin GVIA blocked current suppression by DCG-IV, suggesting modulation of N-type calcium channels. mGlu2/3 receptor immunoreactivity was displayed by neurons in culture and in the submucosal and myenteric plexus of the ileum. A subset of these cells displayed a glutamatergic phenotype as shown by the expression of vesicular glutamate transporter 2. These results provide the first evidence for functional group II mGlu receptors in the ENS and show that these receptors are PTX sensitive and negatively coupled to N-type calcium channels. Inhibition of N-type calcium channels produced by activation of group II mGlu receptors may modulate enteric neurotransmission.  相似文献   

10.
11.
G protein-coupled receptors mobilize neuronal signaling cascades which until now have not been shown to depend on the state of membrane depolarization. Thus we have previously shown that the metabotropic glutamate receptor type 7 (mGlu7 receptor) blocks P/Q-type Ca(2+) channels via activation of a G(o) protein and PKC, in cerebellar granule cells. We show here that the transient depolarizations used to evoke the studied Ca(2+) current were indeed permissive to activate this pathway by a mGlu7 receptor agonist. Indeed, sustained depolarization to 0 mV was sufficient to inhibit P/Q-type Ca(2+) channels. This effect involved a conformational change in voltage-gated sodium channel independently of Na(+) flux, activation of a pertussis toxin-sensitive G-protein, inositol trisphosphate formation, intracellular Ca(2+) release, and PKC activity. Subliminal sustained membrane depolarization became efficient in inducing inositol trisphosphate formation, release of intracellular Ca(2+) and in blocking Ca(2+) channels, when applied concomitantly with the mGlu7a receptor agonist, d,l-aminophosphonobutyrate. This synergistic effect of membrane depolarization and mGlu7 receptor activation provides a mechanism by which neuronal excitation could control action of the mGlu7 receptor in neurons.  相似文献   

12.
Nuclear Ca2+ plays a critical role in many cellular functions although its mode (s) of regulation is unclear. This study shows that the metabotropic glutamate receptor, mGlu5, mobilizes nuclear Ca2+ independent of cytosolic Ca2+ regulation. Immunocytochemical, ultrastructural, and subcellular fractionation techniques revealed that the metabotropic glutamate receptor, mGlu5, can be localized to nuclear membranes in heterologous cells as well as midbrain and cortical neurons. Nuclear mGlu5 receptors derived from HEK cells or cortical cell types bound [3H]quisqualate. When loaded with Oregon Green BAPTA, nuclei isolated from mGlu5-expressing HEK cells responded to the addition of glutamate with rapid, oscillatory [Ca2+] elevations that were blocked by antagonist or EGTA. In contrast, carbachol-activation of endogenous muscarinic receptors led to cytoplasmic but not nuclear Ca2+ responses. Similarly, activation of mGlu5 receptors expressed on neuronal nuclei led to sustained Ca2+ oscillatory responses. These results suggest mGlu5 may mediate intranuclear signaling pathways.  相似文献   

13.
Metabotropic Glutamate Receptors in Glial Cells   总被引:1,自引:1,他引:0  
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its actions via a number of ionotropic glutamate receptors/channels and metabotropic glutamate (mGlu) receptors. In addition to being expressed in neurons, glutamate receptors are expressed in different types of glial cells including astrocytes, oligodendrocytes, and microglia. Astrocytes are now recognized as dynamic signaling elements actively integrating neuronal inputs. Synaptic activity can evoke calcium signals in astrocytes, resulting in the release of gliotransmitters, such as glutamate, ATP, and d-serine, which in turn modulate neuronal excitability and synaptic transmission. In addition, astrocytes, and microglia may play an important role in pathology such as brain trauma and neurodegeneration, limiting or amplifying the pathologic process leading to neuronal death. The present review will focus on recent advances on the role of mGlu receptors expressed in glial cells under physiologic and pathologic conditions. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

14.
Functional interplay between ionotropic and metabotropic receptors frequently involves complex intracellular signaling cascades. The group I metabotropic glutamate receptor mGlu5a co-clusters with the ionotropic N-methyl-d-aspartate (NMDA) receptor in hippocampal neurons. In this study, we report that a more direct cross-talk can exist between these types of receptors. Using bioluminescence resonance energy transfer in living HEK293 cells, we demonstrate that mGlu5a and NMDA receptor clustering reflects the existence of direct physical interactions. Consequently, the mGlu5a receptor decreased NMDA receptor current, and reciprocally, the NMDA receptor strongly reduced the ability of the mGlu5a receptor to release intracellular calcium. We show that deletion of the C terminus of the mGlu5a receptor abolished both its interaction with the NMDA receptor and reciprocal inhibition of the receptors. This direct functional interaction implies a higher degree of target-effector specificity, timing, and subcellular localization of signaling than could ever be predicted with complex signaling pathways.  相似文献   

15.
The regulation of pre-synaptic glutamate release is important in the maintenance and fidelity of excitatory transmission in the nervous system. In this study, we report a novel interaction between a ligand-gated ion channel and a G-protein coupled receptor which regulates glutamate release from parallel fiber axon terminals. Immunocytochemical analysis revealed that GABA(A) receptors and the high affinity group III metabotropic glutamate receptor subtype 4 (mGlu4) are co-localized on glutamatergic parallel fiber axon terminals in the cerebellum. GABA(A) and mGlu4 receptors were also found to co-immunoprecipitate from cerebellar membranes. Independently, these two receptors have opposing roles on glutamate release: pre-synaptic GABA(A) receptors promote, while mGlu4 receptors inhibit, glutamate release. However, coincident activation of GABA(A) receptors with muscimol and mGlu4 with the agonist (2S)-S-2-amino-4-phosphonobutanoic acid , increased glutamate release from [(3) H]glutamate-loaded cerebellar synaptosomes above that observed with muscimol alone. Further support for an interaction between GABA(A) and mGlu4 receptors was obtained in the mGlu4 knockout mouse which displayed reduced binding of the GABA(A) ligand [(35) S]tert-butylbicyclophosphorothionate, and decreased expression of the α1, α6, β2 GABA(A) receptor subunits in the cerebellum. Taken together, our data suggest a new role for mGlu4 whereby simultaneous activation with GABA(A) receptors acts to amplify glutamate release at parallel fiber-Purkinje cell synapses.  相似文献   

16.

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5?/? mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.

  相似文献   

17.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

18.
Pancreatic islets contain ionotropic glutamate receptors that can modulate hormone secretion. The purpose of this study was to determine whether islets express functional group III metabotropic glutamate (mGlu) receptors. RT-PCR analysis showed that rat islets express the mGlu8 receptor subtype. mGlu8 receptor immunoreactivity was primarily displayed by glucagon-secreting alpha-cells and intrapancreatic neurons. By demonstrating the immunoreactivities of both glutamate and the vesicular glutamate transporter 2 (VGLUT2) in these cells, we established that alpha-cells express a glutamatergic phenotype. VGLUT2 was concentrated in the secretory granules of islet cells, suggesting that glutamate might play a role in the regulation of glucagon processing. The expression of mGlu8 by glutamatergic cells also suggests that mGlu8 may function as an autoreceptor to regulate glutamate release. Pancreatic group III mGlu receptors are functional because mGlu8 receptor agonists inhibited glucagon release and forskolin-induced accumulation of cAMP in isolated islets, and (R,S)-cyclopropyl-4-phosphonophenylglycine, a group III mGlu receptor antagonist, reduced these effects. Because excess glucagon secretion causes postprandial hyperglycemia in patients with type 2 diabetes, group III mGlu receptor agonists could be of value in the treatment of these patients.  相似文献   

19.
Metabotropic glutamate receptors 2/3 (mGlu(2/3)) have been implicated in schizophrenia and as a novel treatment target for schizophrenia. The current study examined whether mGlu(2/3) regulates Akt (protein kinase B) and Wnt (Wingless/Int-1) signaling, two cascades associated with schizophrenia and modified by antipsychotics. Western blotting revealed increases in phosphorylated Akt (pAkt) and phosphorylated glycogen synthase kinase-3 (pGSK-3) following acute and repeated treatment of LY379268 (mGlu(2/3) agonist), whereas increases in dishevelled-2 (Dvl-2), dishevelled-3 (Dvl-3), GSK-3 and β-catenin were only observed following repeated treatment. LY341495 (mGlu(2/3) antagonist) induced the opposite response compared with LY379268. Co-immunoprecipitation experiments showed an association between the mGlu(2/3) complex and Dvl-2 providing a possible mechanism to explain how the mGlu(2/3) can mediate changes in Wnt signaling. However, there was no association between the mGlu(2/3) complex and Akt suggesting that changes in Akt signaling following LY341495 and LY379268 treatments may not be directly mediated by the mGlu(2/3) . Finally, an increase in locomotor activity induced by LY341495 treatment correlated with increased pAkt and pGSK-3 levels and was attenuated by the administration of the GSK-3 inhibitor, SB216763. Overall, the results suggest that mGlu(2/3) regulates Akt and Wnt signaling and LY379268 treatment has overlapping effects with D(2) dopamine receptor antagonists (antipsychotic drugs).  相似文献   

20.
Scaffolding proteins interact with membrane receptors to control signaling pathways and cellular functions. However, the dynamics and specific roles of interactions between different components of scaffold complexes are poorly understood because of the dearth of methods available to monitor binding interactions. Using a unique combination of single-cell bioluminescence resonance energy transfer imaging in living neurons and electrophysiological recordings, in this paper, we depict the role of glutamate receptor scaffold complex remodeling in space and time to control synaptic transmission. Despite a broad colocalization of the proteins in neurons, we show that spine-confined assembly/disassembly of this scaffold complex, physiologically triggered by sustained activation of synaptic NMDA (N-methyl-d-aspartate) receptors, induces physical association between ionotropic (NMDA) and metabotropic (mGlu5a) synaptic glutamate receptors. This physical interaction results in an mGlu5a receptor-mediated inhibition of NMDA currents, providing an activity-dependent negative feedback loop on NMDA receptor activity. Such protein scaffold remodeling represents a form of homeostatic control of synaptic excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号