首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying climatic drivers of an animal population's vital rates and locating where they operate steers conservation efforts to optimize species recovery. The population growth of endangered whooping cranes (Grus americana) hinges on juvenile recruitment. Therefore, we identify climatic drivers (solar activity [sunspots] and weather) of whooping crane recruitment throughout the species’ life cycle (breeding, migration, wintering). Our method uses a repeated cross‐validated absolute shrinkage and selection operator approach to identify drivers of recruitment. We model effects of climate change on those drivers to predict whooping crane population growth given alternative scenarios of climate change and solar activity. Years with fewer sunspots indicated greater recruitment. Increased precipitation during autumn migration signified less recruitment. On the breeding grounds, fewer days below freezing during winter and more precipitation during breeding suggested less recruitment. We predicted whooping crane recruitment and population growth may fall below long‐term averages during all solar cycles when atmospheric CO2 concentration increases, as expected, to 500 ppm by 2050. Species recovery during a typical solar cycle with 500 ppm may require eight times longer than conditions without climate change and the chance of population decline increases to 31%. Although this whooping crane population is growing and may appear secure, long‐term threats imposed by climate change and increased solar activity may jeopardize its persistence. Weather on the breeding grounds likely affects recruitment through hydrological processes and predation risk, whereas precipitation during autumn migration may influence juvenile mortality. Mitigating threats or abating climate change should occur within ≈30 years or this wild population of whooping cranes may begin declining.  相似文献   

2.
Coccidia of whooping cranes   总被引:2,自引:0,他引:2  
Coccidial oocysts were observed in 6 of 19 fecal samples from free-ranging whooping cranes (Grus americana) and 4 of 16 samples from captive whooping cranes. Eimeria gruis occurred in four free-ranging whooping cranes and E. reichenowi in two free-ranging and two captive whooping cranes. Fecal samples from two captive cranes contained oocysts of Isospora lacazei which was considered a spurious parasite. Oocysts of both species of Eimeria were prevalent in fecal samples collected from three free-ranging Canadian sandhill cranes (G. canadensis rowani) from whooping crane wintering grounds in Texas. These coccidia were prevalent also in fecal samples from 14 sandhill cranes (of 4 subspecies) maintained in captivity at the Patuxent Wildlife Research Center in Maryland.  相似文献   

3.
The capacity to cryopreserve semen from captive cranes facilitates production of offspring from behaviorally incompatible or geographically separated pairs, and allows for long-term preservation of valuable genetic materials. The present study sought to develop effective cryopreservation protocols for whooping (Grus americana) and white-naped (Grus vipio) cranes, through examining the influences of two permeating (DMA and Me2SO) and one non-permeating (sucrose) cryoprotectants, as well as vitamin E on post-thaw sperm survival. In Study 1, ejaculates (whooping: n = 10, white-naped: n = 8) were collected and cryopreserved in one of six cryo-diluents (crane extender with: DMA; DMA+0.1M sucrose; Me2SO; Me2SO+0.1M sucrose; 0.1M sucrose; 0.2M sucrose) using a two-step cooling method. Frozen samples were thawed and assessed for overall motility, motion characteristics, membrane integrity, morphology, and ability to bind to the inner perivitelline membrane (IPVM). In Study 2, whooping crane ejaculates (n = 17) were frozen in crane extender containing Me2SO alone or with vitamin E (5 μg/mL or 10 μg/mL). Frozen samples were thawed and assessed as in Study 1, except the binding assay. White-naped crane sperm were more tolerant to cryopreservation than whooping crane (15% vs 6% post-thawed motility). In both species, sperm cryopreserved in medium containing Me2SO alone displayed higher post thaw survival and ability to bind to IPVM than the other cryodiluent treatments. Vitamin E supplementation exerted no benefits to post thaw motility or membrane integrity. The findings demonstrated that there was species specificity in the susceptibility to cryopreservation. Nevertheless, Me2SO was a preferred cryoprotectant for sperm from both whooping and white-naped cranes.  相似文献   

4.
The enteric flora of captive whooping cranes (Grus americana) and sandhill cranes (Grus canadensis) has not been well described, despite its potential importance in the understanding of both the normal condition of the intestinal physiology of these animals and the altered colonization within disease states in these birds. Nineteen whooping cranes and 23 sandhill cranes housed currently at the Calgary Zoo or its affiliated Devonian Wildlife Conservation Centre (DWCC) in Calgary, Alberta were sampled from October 2004–February 2005 by collecting aerobic and anaerobic cloacal swabs from each bird. There were seven major groupings of bacteria isolated from both species of crane. Gram‐positive cocci, coliforms, and gram‐negative bacilli were the most prevalent types of bacteria isolated for both crane species, with Escherichia coli, Enterococcus faecalis, and Streptococcus Group D, not Enterococcus the bacterial species isolated most commonly. There was a significant difference in the average number of isolates per individual between the two crane species but no differences between age or gender categories within crane species. Campylobacter sp. were isolated from five whooping cranes. The potential zoonotic pathogen Campylobacter jejuni was isolated from one whooping crane and C. upsaliensis was isolated from a second. Three other isolates were unspeciated members of the Campylobacter genus and likely belong to a species undescribed previously. The evaluation of the enteric cloacal flora of whooping cranes and sandhill cranes illustrates that differences exist between these two closely related crane species, and highlights the potential implications these differences may have for current practices involving captive wildlife. Zoo Biol 0:1–13, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

5.
The Aransas-Wood Buffalo population (the only non-reintroduced, migratory population) of endangered whooping cranes (Grus americana) overwinters along the Texas Gulf Coast, USA. Understanding whooping crane space use on the wintering grounds reveals essential aspects of this species' ecology, which subsequently assists with conservation. Using global positioning system telemetry data from marked whooping cranes during 2009–2017, we fit continuous-time stochastic process models to describe movement and home range using autocorrelated kernel density estimation (AKDE) and explored variation in home range size in relation to age, sex, reproductive status, and drought conditions. We used the Bhattacharyya coefficient of overlap and distance between home range centroids to quantify site fidelity. We examined the effects of time between winter home ranges and the sex of the crane on site fidelity using Bayesian mixed-effects beta regression. Winter whooping crane 95% AKDE home range size averaged 30.1 ± 45.2 (SD) km2 (median = 14.3, range = 1.1–308.6). Home ranges of sub-adult females were approximately 2 times larger than those of sub-adult males or families. As drought worsened, home ranges typically expanded. Between consecutive years, the home ranges of an adult crane exhibited 68 ± 31% overlap (site fidelity), but fidelity to winter sites declined in subsequent winters. The overlap of adult home ranges with the nearest unrelated family averaged 33 ± 28%. As a whooping crane aged, overlap with its winter home range as a juvenile declined, regardless of sex. By 4 years of age, a whooping crane had approximately 14 ± 28% overlap with its juvenile winter home range. Limited evidence suggested male whooping cranes return to within 2 km of their juvenile home range by their fifth winter. Previous data obtained from aerial surveys led ecologists to assume that whooping crane families normally used small areas (~2 km2) and expressed persistent site fidelity. Our analyses showed <8% of families had home ranges ≤2 km2, with the average area 15 times greater, and waning site fidelity over time. Our work represents an analysis of whooping crane home ranges for this population, identifying past misconceptions of winter space use and resulting in better estimates of space requirements for future conservation efforts.  相似文献   

6.
Hematophagous insects can negatively affect the reproductive success of their vertebrate hosts. To determine the influence of hematophagous insects on endangered vertebrates requires specially designed programs that minimize disturbance to the hosts and address problems associated with their small populations. We developed and evaluated a surveillance program for black flies potentially affecting a population of whooping cranes (Grus americana) introduced to central Wisconsin, U.S.A. In one of the few studies to survey host‐seeking female black flies and their immature stages concurrently, we processed nearly 346,000 specimens and documented 26 species, of which only two, Simulium annulus and Simulium johannseni, were attracted to nesting whooping cranes. Attempts to assess black fly populations with artificial nests and real crane eggs were unsuccessful. Carbon‐dioxide traps performed well in describing black fly taxa on the landscape. However, the number of black flies at whooping crane nests was consistently higher than the number captured in carbon‐dioxide traps. The carbon‐dioxide traps poorly described the presence/absence, population fluctuations, and periodicity of black flies at whooping crane nests. The weak performance of the carbon‐dioxide traps might have resulted from microhabitat differences between trap locations and nests or from Simulium annulus and Simulium johannseni using sensory cues in addition to carbon dioxide to find hosts. Choice of trapping techniques, therefore, depends on the information required for the particular study objectives.  相似文献   

7.
Eimeria gruis and E. reichenowi cause coccidiosis, a major parasitic disease of cranes. By non-invasive molecular approaches, we investigated the prevalence and genetic characterization of pathogens in two Japanese crane habitats; one is Hokkaido inhabited by the endangered red-crowned crane, and the other is Izumi in Kyushu where populations that consist mainly of vulnerable hooded and white-naped cranes migrate in winter. The non-invasively collected faecal samples from each wintering population were first subjected to host genomic DNA-targeted analyses to determine the sample origin and avoid sample redundancy. Extremely high prevalence was observed in the Izumi populations (> 90%) compared with the Hokkaido population (18-30%) by examining 470 specimens by microscopy and PCR-based capillary electrophoresis (PCR-CE), using genetic markers in the second internal transcribed spacer (ITS2). Correspondence analysis of PCR-CE data revealed differences in community composition of coccidia between hooded and white-naped cranes. 18S rRNA and ITS2 sequences were determined from single oocysts excreted by red-crowned and hooded cranes. Phylogenetic analysis of 18S rRNA suggested that E. reichenowi was polyphyletic while E. gruis was monophyletic. Together with PCR-CE data, these results indicate different host specificity among the E. reichenowi type. Our data suggest that E. reichenowi comprises multiple species.  相似文献   

8.
Electrophoretic analysis of proteins yielded evidence on the relationships of species of cranes and on genetic diversity within populations of some species. Diversity within the Greater Sandhill crane and a Florida population of the Florida Sandhill crane was similar to that of most other vertebrates, but diversity was low in the Mississippi Sandhill crane, in the Okefenokee population of the Florida Sandhill crane, and within the Siberian and Sarus cranes. Diversity was surprisingly high among whooping cranes, whose number dropped to less than 25 early in this century. Phylogenetic analysis, using both character state and distance algorithms, yielded highly concordant trees for the 15 species. The African crowned cranes (Balearica) were widely divergent from all other cranes. Species of Anthropoides, Bugeranus, and Grus clustered closely but sorted into two lineages: a Whooper Group consisted of the whooping, common, hooded, black-necked, white-naped, and red-crowned cranes of genus Grus; and a Sandhill Group included the Sandhill, Siberian, Sarus, and Brolga cranes of genus Grus, the wattled crane of genus Bugeranus, and the Demoiselle and blue cranes of genus Anthropoides.  相似文献   

9.
A female-specific DNA fragment (CSL-W; crane sex-linked DNA on W chromosome) was cloned from female whooping cranes (Grus americana). From the nucleotide sequence of CSL-W, a set of polymerase chain reaction (PCR) primers was identified which amplify a 227-230 bp female-specific fragment from all existing crane species and some other noncrane species. A duplicated versions of the DNA segment, which is found to have a larger size (231-235 bp) than CSL-W in both sexes, was also identified, and was designated CSL-NW (crane sex-linked DNA on non-W chromosome). The nucleotide similarity between the sequences of CSL-W and CSL-NW from whooping cranes was 86.3%. The CSL primers do not amplify any sequence from mammalian DNA, limiting the potential for contamination from human sources. Using the CSL primers in combination with a quick DNA extraction method allows the noninvasive identification of crane gender in less than 10 h. A test of the methodology was carried out on fully developed body feathers from 18 captive cranes and resulted in 100% successful identification.  相似文献   

10.
In contrast with isosporoid species of coccidia that have established extraintestinal phases of development, the eimeriids, except for a few species, generally have been considered inhabitants of the intestinal tract. Eimeria infection in sandhill cranes (Grus canadensis) and whooping cranes (G. americana) may result in disseminated visceral coccidiosis. Nodules were observed in the oral cavity of 33% (n = 95) of the G. canadensis at the Patuxent Wildlife Research Center (PWRC) in Laurel, MD. Necropsy of six of the afflicted cranes revealed granulomatous nodules in many tissues and organs. Histologic studies disclosed protozoan organisms morphologically resembling schizonts in the granulomas, and endogenous stages of coccidia were present in the intestines of four birds. Fecalysis of three of four sandhill cranes yielded oocysts of E. reichenowi and E. gruis. Only E. reichenowi-type oocysts were recovered from a dead whooping crane sample. Domestic broiler chicks each intubated with about 1 times 106 pooled sporulated oocysts of E. reichenowi and E. gruis were not infected. Exposure of six incubator-hatched and hand-reared sandhill crane chicks to oocysts artificially (two chicks) and naturally (four chicks) resulted in typical infection of intestinal epithelium with invasion of subepithelial tissues extending to the muscular layer and widespread extraintestinal development. Asexual and sexual stages occurred primarily in macrophages in the liver, spleen, heart, and lung. In the lung, oocysts were found in bronchial exudate and epithelial lining cells. Six of ten G. canadensis chicks, one adult G. americana, and three of five G. americana chicks that died naturally at PWRC had disseminated visceral coccidiosis.  相似文献   

11.
While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.  相似文献   

12.
Endangered whooping cranes (Grus americana) have been produced in captivity for reintroduction programs since the 1980s, using techniques such as artificial insemination, multiple clutching, and captive-rearing to speed recovery efforts. Chicks are often hand-reared (HR) by caretakers in crane costumes, socialized into groups and released together, unlike parent-reared (PR) cranes that are raised individually by a male/female crane pair and released singly. HR cranes historically exhibit greater morbidity rates during development than PR cranes, involving musculoskeletal and respiratory system disease, among others. We hypothesized that HR crane chicks exhibit a higher baseline fecal glucocorticoid metabolite (FGM) concentrations during the development compared with PR chicks. Fecal samples were collected between 15 and 70 days of age from HR (n = 15) and PR (n = 8) chicks to test for differences in FGM concentrations using a radioimmunoassay technique following ethanol extraction for steroids. Linear mixed model analysis suggests increasing age of the chick was associated with an increase in FGM (p < .001). Analysis also supported the interaction between rearing strategy and sex of the crane chick (p < .01). Female PR chicks had greater FGM concentrations than all other groups (PR male, p < .01; HR female, p < .001; and HR male, p < .001). This result suggests that there may be an effect of rearing strategy on stress physiology of whooping crane chicks, especially among females. Further research is needed to investigate whether the FGM concentrations are reflective of true differences in stress physiology of young cranes and whether this may impact health and conservation success.  相似文献   

13.
For captive-reared cranes, pelvic limb abnormalities in chicks have been identified as significant morbidity/mortality factors. An important component of the diagnosis of limb abnormalities is the understanding of the normal limb. This study was undertaken to describe the normal, radiographic development of the femur, tibiotarsus, tarsometatarsus, and fibula of the whooping crane (Grus americana), Florida sandhill crane (Grus canadensis pratensis), and Siberian crane (Grus leucogeranus). Crane chicks were anesthetized and their pelvic limb bone development evaluated radiographically on a weekly to bimonthly basis from one to fourteen weeks of age. Body weight, bone length, diaphyseal width, and physeal development and closure were evaluated. Based on the radiographic analysis, the gross development of the long bones of the pelvic limb of whooping, Florida sandhill, and Siberian cranes was found to be similar among the three species, and not dissimilar from other avian species which have been studied. Repeated handling, anesthesia, and radiographic exposure did not produce any behavioral, developmental, or physical abnormalities in the studied cranes when compared to cranes of the same species raised using the same methods. This is the first work to describe pelvic limb bone development in these species. © 1996 Wiley-Liss, Inc.  相似文献   

14.
While agricultural intensification and expansion are major factors driving loss and degradation of natural habitat and species decline, some wildlife species also benefit from agriculturally managed habitats. This may lead to high population densities with impacts on both human livelihoods and wildlife conservation. Cranes are a group of 15 species worldwide, affected both negatively and positively by agricultural practices. While eleven species face critical population declines, numbers of common cranes (Grus grus) and sandhill cranes (Grus canadensis) have increased drastically in the last 40 years. Their increase is associated with higher incidences of crane foraging on agricultural crops, causing financial losses to farmers. Our aim was to synthesize scientific knowledge on the bilateral effects of land use change and crane populations. We conducted a systematic literature review of peer‐reviewed publications on agriculture‐crane interactions (n = 135) and on the importance of agricultural crops in the diet of cranes (n = 81). Agricultural crops constitute a considerable part of the diet of all crane species (average of 37%, most frequently maize (Zea mays L.) and wheat (Triticum aestivum L.)). Crop damage was identified in only 10% of all agriculture‐crane interactions, although one‐third of interactions included cranes foraging on cropland. Using a conceptual framework analysis, we identified two major pathways in agriculture‐crane interactions: (1) habitat loss with negative effects on crane species dependent on specific habitats, and (2) expanding agricultural habitats with superabundant food availability beneficial for opportunistic crane species. The degree to which crane species can adapt to agricultural land use changes may be an important factor explaining their population response. We conclude that multi‐objective management needs to combine land sparing and land sharing strategies at landscape scale. To support viable crane populations while guaranteeing sustainable agricultural production, it is necessary to include the perspectives of diverse stakeholders and streamline conservation initiatives and agricultural policy accordingly.  相似文献   

15.
Madura cattle, which are native to Indonesia and mainly kept on Madura Island, East Java, are expected to contribute to improving the regional meat self-sufficiency. Eimeria spp. are the most pathogenic protozoans among gastrointestinal parasites in livestock but no molecular surveys of Eimeria spp. in Madura cattle have been conducted to date. In this study, a total of 183 fecal samples were collected from Madura cattle and 60 (32.8%) were positive for parasites of protozoans and nematodes by the sugar floatation method. Among the samples with parasites, Eimeria spp. oocysts were detected in 50 samples (27.3%) with an average OPG value of 1686.1. Eimeria spp. were successfully identified to the species level in 26 samples with Eimeria bovis being the most prevalent, followed by E. zuernii and E. aubrunensis. A total of 21 samples showed mixed infection of more than two species of Eimeria. E. bovis and E. zuernii have been recognized as having high virulency and, thus, these parasites are potential sources of severe coccidiosis and the cause of infections in other cattle. Although additional studies are warranted, these results can be helpful for improving the management and productivity of Madura cattle.  相似文献   

16.
Fifty cranes, consisting of 46 sandhill (Grus canadensis) and four whooping cranes (Grus americana), were studied. Eighteen sandhill cranes and the four whooping cranes were naturally infected with disseminated visceral coccidiosis (DVC). The remaining sandhill cranes were chicks experimentally infected with oocysts of Eimeria reichenowi and/or E. gruis; five chicks served as controls. There were no clinical signs attributed to respiratory infection. Necropsy of naturally infected adult birds revealed nodules in many organs, including the lung, air sacs, trachea and nares. Artificially infected sandhill cranes and the whooping crane chicks that died from DVC had congestion and consolidated areas in the lung with frothy fluid in the airways. Grossly visible nodules were observed from 10 days postinoculation. Granulomatous pneumonia and tracheitis were observed with light microscopy. Lesions were associated with merogonic and gametogonic stages of eimerian coccidia. Granulomas and granulomatous foci contained parasitized large mononuclear cells. Merogonic stages were seen in lymphoid cells by ultrastructural examination. Oocysts were observed in the trachea and bronchial mucosa and admixed with exudate in the airways, indicating that crane eimerians can complete their life cycle at these sites. Of the few eimeriid coccidia that have extraintestinal stages of development in birds and mammals, only the species in cranes complete their life cycle in both the digestive and respiratory tracts.  相似文献   

17.
Parasites of the genus Eimeria are involved in the neonatal diarrhea complex of alpaca (Vicugna pacos) crias, and infection by Eimeria is commonly known as coccidiosis. There are limited reports of these protozoa in clinically asymptomatic crias. In this study, fecal samples from 78 clinically asymptomatic alpaca crias were analyzed to evaluate the prevalence, parasitological load, and diversity of Eimeria species. This study was conducted in the Quenamari community located in the Peruvian Andes (Marangani, Cuzco) at 4500 m above sea level. All fecal samples were examined for parasites using the quantitative McMaster and modified Stoll techniques. Microscopic examination showed the presence of Eimeria oocysts in 68 out of the 78 samples (87.18%). Among the 78 samples we found E. lamae in 67 (85.90%), E. punoensis in 49 (62.82%), E. alpacae in 42 (53.85%), E. macusaniensis in 32 (41.03%), and E. ivitaensis in four (5.13%). Regarding parasitized crias, overall there was a mean parasitological load of 43,920 oocysts per gram of feces (OPG). Eimeria lamae had the highest parasitological load (mean 206,600 OPG). These findings could be due to environmental contamination with oocysts of different Eimeria species. Additional research is needed to determine if this burden of coccidiosis could produce subclinical impacts to the health of alpaca crias.  相似文献   

18.
The genetic diversity of the founders of an artificial population of the Siberian crane Grus leucogeranus Pallas (rare species of cranes) was characterized using 10 microsatellite loci. It was established that the allelic diversity (on average, 5.9 alleles per locus) and genic (H O = 0.739) diversity of the Siberian crane is rather high and comparable with the estimations for natural populations of different crane species. Genetic passportization of the birds (119 individuals) from the register of the Siberian crane International Studbook was carried out at the initial stage. The efficiency of genetic passportization for individual identification, identification of the origin, paternity analysis, and exclusion of inbreeding was demonstrated in Siberian cranes under natural mating and artificial insemination. Cases of natural reproduction in pairs of Siberian cranes imprinted to the human and continuous storage of spermatozoa in the female reproductive ducts were registered.  相似文献   

19.
In Japan, the three main crane species are the endangered red-crowned crane (Grus japonensis) inhabiting Hokkaido, the northernmost island of Japan; the vulnerable hooded crane (Grus monacha); and the vulnerable white-naped crane (Grus vipio). Both the hooded and white-naped cranes migrate in winter to Izumi in Kyushu, the southern island of Japan. In this study, we investigated the cranes and their coccidian parasites, through a targeted molecular approach using faecal DNA to develop a noninvasive method for infectious disease research. To determine the origin of noninvasively collected faecal samples, host species were identified by sequencing a region of approximately 470 bp of the mitochondrial 16S ribosomal RNA gene in the faecal DNA. Furthermore, to avoid sample redundancy, individual determination was performed by fragment analysis using microsatellite and sex-linked markers. For microsatellite genotyping, previously reported markers and markers isolated in this study were examined, and seven loci for red-crowned cranes, eight for hooded cranes and six for white-naped cranes displayed polymorphisms. A low error rate was demonstrated by comparing microsatellite data generated from faecal DNA samples with that generated from feather DNA samples, indicating a high reliability. Polymerase chain reaction-based capillary electrophoresis (PCR-CE), employing genetic markers in the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA, was employed to detect crane coccidia. The sensitivity of detection of PCR-CE using faecal DNA was inferior to that with traditional microscopy; however, our results suggest that PCR-CE can depict crane coccidia diversity with higher resolution and it is a useful tool to characterize community composition of coccidia in detail.  相似文献   

20.
白鹤(Leucogeranus Leucogeranus)是国家Ⅰ级重点保护野生动物,唯一一种极度濒危(CR)鹤类,分布和种群数量是评估其濒危程度的重要参数。无人机调查作为目前生态学研究的一个重要调查方法,为查明白鹤的越冬分布、种群数量及幼鸟比例,于2022年1月使用地面监测结合无人机调查的方法在江西、山东、安徽、湖南、湖北等地的湖泊和农田中开展越冬白鹤调查。野外调查共记录白鹤5607只,网络信息检索在调查区域外的8个地点记录白鹤9只,合计记录越冬白鹤5616只。其中江西鄱阳湖记录到越冬白鹤4813只,占总数的85.7%,主要分布在康山垦殖场、五星垦殖场和成新垦殖场;山东黄河三角洲记录到越冬白鹤625只,占总数的11.1%。安徽、湖南、湖北分别记录到越冬白鹤34,63和72只。对部分群体的白鹤幼鸟数量进行统计,4680只白鹤中,记录到幼鸟674只,幼鸟比例为14.4%,其中湖南越冬白鹤幼鸟比例最高,达28.6%,山东越冬白鹤幼鸟比例最低,为11.5%。调查刷新了白鹤种群数量,证实了山东黄河三角洲是目前除江西鄱阳湖外最重要的白鹤越冬地,缓解了白鹤越冬期过度集中的压力。基于本研究结果,我们...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号