首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ocean acidification (OA) is occurring across a backdrop of concurrent environmental changes that may in turn influence species'' responses to OA. Temperature affects many fundamental biological processes and governs key reactions in the seawater carbonate system. It therefore has the potential to offset or exacerbate the effects of OA. While initial studies have examined the combined impacts of warming and OA for a narrow range of climate change scenarios, our mechanistic understanding of the interactive effects of temperature and OA remains limited. Here, we use the blue mussel, Mytilus galloprovincialis, as a model species to test how OA affects the growth of a calcifying invertebrate across a wide range of temperatures encompassing their thermal optimum. Mussels were exposed in the laboratory to a factorial combination of low and high pCO2 (400 and 1200 µatm CO2) and temperatures (12, 14, 16, 18, 20, and 24°C) for one month. Results indicate that the effects of OA on shell growth are highly dependent on temperature. Although high CO2 significantly reduced mussel growth at 14°C, this effect gradually lessened with successive warming to 20°C, illustrating how moderate warming can mediate the effects of OA through temperature''s effects on both physiology and seawater geochemistry. Furthermore, the mussels grew thicker shells in warmer conditions independent of CO2 treatment. Together, these results highlight the importance of considering the physiological and geochemical interactions between temperature and carbonate chemistry when interpreting species'' vulnerability to OA.  相似文献   

2.

Background

As the oceans simultaneously warm, acidify and increase in P CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.

Methodology/Principal Findings

We examined the interactive effects of near-future ocean warming and increased acidification/P CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/P CO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth.

Conclusions and Significance

This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations.  相似文献   

3.
Ocean acidification (OA) is a major threat to marine ecosystems, particularly coral reefs which are heavily reliant on calcareous species. OA decreases seawater pH and calcium carbonate saturation state (Ω), and increases the concentration of dissolved inorganic carbon (DIC). Intense scientific effort has attempted to determine the mechanisms via which ocean acidification (OA) influences calcification, led by early hypotheses that calcium carbonate saturation state (Ω) is the main driver. We grew corals and coralline algae for 8–21 weeks, under treatments where the seawater parameters Ω, pH, and DIC were manipulated to examine their differential effects on calcification rates and calcifying fluid chemistry (Ωcf, pHcf, and DICcf). Here, using long duration experiments, we provide geochemical evidence that differing physiological controls on carbonate chemistry at the site of calcification, rather than seawater Ω, are the main determinants of calcification. We found that changes in seawater pH and DIC rather than Ω had the greatest effects on calcification and calcifying fluid chemistry, though the effects of seawater carbonate chemistry were limited. Our results demonstrate the capacity of organisms from taxa with vastly different calcification mechanisms to regulate their internal chemistry under extreme chemical conditions. These findings provide an explanation for the resistance of some species to OA, while also demonstrating how changes in seawater DIC and pH under OA influence calcification of key coral reef taxa.  相似文献   

4.
Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.  相似文献   

5.
While the stock of introduced Pacific oysters (Crassostrea gigas) increased in the Oosterschelde estuary (SW Netherlands), so did the filtration pressure of all bivalve species together. In the same period, stocks of native bivalves declined slightly. The expansion of Pacific oysters in Dutch estuaries might be partially due to better abilities of their larvae to avoid or escape filtration, compared to larvae of native bivalves. In this context, escape and swimming abilities of Pacific oyster larvae and the larvae of the native blue mussel (Mytilus edulis) were compared.Swimming behaviour of C. gigas larvae and larvae of M. edulis was recorded in still water and in a suction current mimicking a bivalve feeding current, in a horizontal and in a vertical plane. Larval swimming behaviour in a suction flow field was reconstructed by subtracting local water movement vectors from the total movement of larvae, yielding movement paths due to larval swimming alone.Swimming speeds and the rate of displacement in vertical direction of C. gigas and M. edulis larvae were related to larval shell length, and to the pitch of up- or downward swimming.Larvae of both species did not show escape reactions in a suction flow field. With increasing shell length, larval swimming speeds of both species increased significantly. Swimming speeds of C. gigas larvae were significantly higher than swimming speeds of M. edulis larvae, resulting in a faster vertical displacement. The ability to migrate to more favourable water layers faster may offer C. gigas an advantage over native bivalves with slower swimming larvae.  相似文献   

6.
Although theory suggests geographic variation in species' performance is determined by multiple niche parameters, little consideration has been given to the spatial structure of interacting stressors that may shape local and regional vulnerability to global change. Here, we use spatially explicit mosaics of carbonate chemistry, food availability and temperature spanning 1280 km of coastline to test whether persistent, overlapping environmental mosaics mediate the growth and predation vulnerability of a critical foundation species, the mussel Mytilus californianus. We find growth was highest and predation vulnerability was lowest in dynamic environments with frequent exposure to low pH seawater and consistent food. In contrast, growth was lowest and predation vulnerability highest when exposure to low pH seawater was decoupled from high food availability, or in exceptionally warm locations. These results illustrate how interactions among multiple drivers can cause unexpected, yet persistent geographic mosaics of species performance, interactions and vulnerability to environmental change.  相似文献   

7.
Increased atmospheric CO2 emissions are inducing changes in seawater carbon chemistry, lowering its pH, decreasing carbonate ion availability and reducing calcium carbonate saturation state. This phenomenon, known as ocean acidification, is happening at a faster rate in cold regions, i.e., polar and sub-polar waters. The larval development of Arbacia dufresnei from a sub-Antarctic population was studied at high (8.0), medium (7.7) and low (7.4) pH waters. The results show that the offspring from sub-Antarctic populations of A. dufresnei are susceptible to a development delay at low pH, with no significant increase in abnormal forms. Larvae were isometric between pH treatments. Even at calcium carbonate (CaCO3) saturation states (of both calcite and aragonite, used as proxies of the magnesium calcite) <1, skeleton deposition occurred. Polar and sub-polar sea urchin larvae can show a certain degree of resilience to acidification, also emphasizing A. dufresnei potential to poleward migrate and further colonize southern regions.  相似文献   

8.
Ocean surface pH levels are predicted to fall by 0.3–0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2–4°C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH –0.4 pH units) and warming (ambient temperature +4°C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4–6 h day−1). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.  相似文献   

9.
Insight into potential mechanisms of succession following disturbance to an ecological community can be gained by considering processes that contribute to the rise (colonization, interactions with established species) and demise (differential mortality) of specific stages within the successional sequence. Most successional theories focus on the rise to dominance, assuming demise is the result of competition, but other factors can cause differential mortality among species, including physical disturbance, senescence, and consumers. In rocky intertidal communities on the coast of Washington state, USA, gaps in mussel beds exhibit a succession from predator-susceptible to predator-resistant species following disturbance, suggesting that differential consumption by mobile species may play an important role in the demise of early succession species and the eventual dominance of the mussel Mytilus californianus. Experimental manipulation of a dominant species earlier in succession, the blue mussel Mytilus trossulus, demonstrated that this species inhibits the invasion of M. californianus in the absence of predators. Experimental manipulation of predatory snails (Nucella emarginata and Nucella canaliculata), which feed heavily on M. trossulus but not M. californianus, greatly increased the rate at which M. californianus invaded gaps. These results and those of other studies indicate that consumers frequently have important effects on the dynamics of succession in benthic marine systems, and might also play a role in other settings.  相似文献   

10.
Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind−1•d−1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P<0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P<0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.  相似文献   

11.
Ocean acidification, characterized by elevated pCO2 and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO2 exposure (resulting in pH = 7.39, Ωar = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO2 to ambient CO2 conditions (pH = 7.93, Ωar = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO2 treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO2 treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO2 are still detectable after 7 d of larval development; the shells of larvae exposed to high CO2 for the first 3 d of development and subsequently exposed to ambient CO2 were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO2 throughout the experiment.  相似文献   

12.
The effect of the excretory-secretory products of some fouling animals on the settling and metamorphosis of larvae of the solitary ascidian Styela rustica was assessed. The substances secreted by the sponge Halichondria panicea stimulated settling of larvae, but concurrently blocked their metamorphosis. The excretory-secretory products of the mussel Mytilus edulis and the ascidian Molgula citrine did not affect settling of the S. rustica larvae but impeded their subsequent development. Water conditioned by the bivalve Hiatella arctica, stimulated settling and, apparently, metamorphosis of the larvae of S. rustica. The chemical substances produced by adult individuals of S. rustica facilitated settling of conspecific larvae but slightly delayed their metamorphosis.  相似文献   

13.
Nacrein-like proteins have carbonic anhydrase (CA)-like domains, but their coding regions are flanked by inserted repeat sequence, such as Gly-X-Asn. Reportedly, nacrein-like proteins show the highest similarity to human carbonic anhydrase 1(α-CA1), possess CA catalytic functions, and play a key role in shell biomineralization. In the present study, two novel nacrein-like proteins were firstly identified from the shell-forming mantle of the Pacific oyster Crassostrea gigas. With numerous analyses, it was identified and characterized that both the nacrein-like proteins F1 and F2 were secreted and most closely related to the nacrein-like protein of California mussel Mytilus californianus via phylogenetic analysis. RT-PCR analysis showed that the nacrein-like proteins F1 and F2 were expressed in multiple tissues and the expression levels remarkably rose after entering the spat stage, which were basically consistent with the increase of calcite fractions in the total shell volume. Surprisingly, the Gly-X-Asn repeat domain, which is distinctive in most nacrein-like proteins, was absent in the two newly identified nacrein-like proteins in C. gigas and replaced with a series of acidic amino acids (D/E). Regardless, nacrein-like proteins in mollusks seem to be vital to the deposition of calcium carbonate and likely perform diverse functions.  相似文献   

14.
Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification – CaCO3 dissolution) and net community organic carbon production (NCP = primary production ? respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased net CaCO3 dissolution may partially counteract reductions in seawater pH associated with anthropogenic OA at the local scale.  相似文献   

15.
The effects of the excretory-secretory products (ESPs) of several fouling organisms on the larvae of the sponge Halichondria panicea were assessed in laboratory experiments. The ESPs of the brown alga Laminaria saccharina significantly stimulated larval settlement and metamorphosis, while the metabolites excreted by conspecific adult colonies were harmful to H. panicea larvae. The ESPs of the ascidians Styela rustica and Molgula citrina and the blue mussel Mytilus edulis impeded both the settlement and metamorphosis of the sponge larvae to varying degrees. The chemical cues of the bivalve Hiatella arctica had no significant effect on the number of settled larvae of H. panicea but retarded their metamorphosis.  相似文献   

16.
Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310–350 cells mL−1 vs. 1600–2000 cells mL−1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals'' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.  相似文献   

17.
Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2]) levels. In controlled‐laboratory experiments we explored the interactive effects of pH, [O2], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2] reflective of their environment (80–260 μmol kg?1). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses.  相似文献   

18.
Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2 to 3.3, which is well below the seawater pH of ~ 8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7–8.  相似文献   

19.
In molluscs haemolymph lectins bearing ?brinogen-like domain (FREP) act as immune pattern-recognition receptors. A full-length cDNAs of MytFREP1 and MytFREP2 cloned from haemocytes of blue mussel Mytilus edulis encoded putative polypeptides of 230 and 241 amino acids. Both polypeptides consist of signal peptide and C-terminal fibrinogen-like domain. Immune functions of these molecules may be extrapolated from the close-related and functionally characterized lectin AiFREP from bay scallop, Argopecten irradians. However, immune challenge experiments with zymosan particles, Escherichia coli bacterium and cercariae of Himasthla elongata (Trematoda) failed to modulate MytFREP1 and MytFREP2 mRNA expression in M. edulis haemocytes. Hypothetically, it argues into rather high specificity of mechanisms triggering a differential expression of MytFREP genes. The search in the EST database revealed orthologous copies for described genes and portion of relatively similar genes from two close-related mytilids, Mytilus galloprovincialis and Mytilus californianus. We document the new multigene family of FREPs from bivalves of genus Mytilus. MytFREP family currently represented by 2 genes from M. edulis, 4 genes from M. californianus and 7 genes from M. galloprovincialis.  相似文献   

20.
Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under‐saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号