首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
Traditional psychedelics are undergoing a transformation from recreational drugs, to promising pharmaceutical drug candidates with the potential to provide an alternative treatment option for individuals struggling with mental illness. Sustainable and economic production methods are thus needed to facilitate enhanced study of these drug candidates to support future clinical efforts. Here, we expand upon current bacterial psilocybin biosynthesis by incorporating the cytochrome P450 monooxygenase, PsiH, to enable the de novo production of psilocybin as well as the biosynthesis of 13 psilocybin derivatives. The substrate promiscuity of the psilocybin biosynthesis pathway was comprehensively probed by using a library of 49 single-substituted indole derivatives, providing biophysical insights to this understudied metabolic pathway and opening the door to the in vivo biological synthesis of a library of previously unstudied pharmaceutical drug candidates.  相似文献   

3.
α-thrombin is a potent mitogen for fibroblasts and initiates a rapid signal transduction pathway leading to the activation of Ras and the stimulation of cell cycle progression. While the signaling events downstream of Ras have been studied in significant detail and appear well conserved across many species and cell types, the precise molecular events beginning with thrombin receptor activation and leading to the activation of Ras are not as well understood. In this study, we examined the immediate events in the rapid response to α-thrombin, in a single cell type, and found that an unexpected degree of specificity exists in the pathway linking α-thrombin to Ras activation. Specifically, although IIC9 cells express all three Ras isoforms, only N-Ras is rapidly activated by α-thrombin. Further, although several Gα subunits associate with PAR1 and are released following stimulation, only Gαi2 couples to the rapid activation of Ras. Similarly, although IIC9 cells express many Gβ and Gγ subunits, only a subset associates with Gαi2, and of those, only a single Gβγ dimer, Gβ1γ5, participates in the rapid activation of N-Ras. We then hypothesized that co-localization into membrane microdomains called lipid rafts, or caveolae, is at least partially responsible for this degree of specificity. Accordingly, we found that all components localize to lipid rafts and that disruption of caveolae abolishes the rapid activation of N-Ras by α-thrombin. We thus report the molecular elucidation of an extremely specific and rapid signal transduction pathway linking α-thrombin stimulation to the activation of Ras.  相似文献   

4.
The fungus Aspergillus tamarii metabolizes progesterone to testololactone in high yield through a sequential four step enzymatic pathway which, has demonstrated flexibility in handling a range of steroidal probes. These substrates have revealed that subtle changes in the molecular structure of the steroid lead to significant changes in route of metabolism. It was therefore of interest to determine the metabolism of a range of 5-ene containing steroidal substrates. Remarkably the primary route of 5-ene steroid metabolism involved a 3β-hydroxy-steroid dehydrogenase/Δ5–Δ4 isomerase (3β-HSD/isomerase) enzyme(s), generating 3-one-4-ene functionality and identified for the first time in a fungus with the ability to handle both dehydroepiansdrosterone (DHEA) as well as C-17 side-chain containing compounds such as pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one. Uniquely in all the steroids tested, 3β-HSD/isomerase activity only occurred following lactonization of the steroidal ring-D. Presence of C-7 allylic hydroxylation, in either epimeric form, inhibited 3β-HSD/isomerase activity and of the substrates tested, was only observed with DHEA and its 13α-methyl analogue. In contrast to previous studies of fungi with 3β-HSD/isomerase activity DHEA could also enter a minor hydroxylation pathway. Pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one were metabolized solely through the putative 3β-HSD/isomerase pathway, indicating that a 17β-methyl ketone functionality inhibits allylic oxidation at C-7. The presence of the 3β-HSD/isomerase in A. tamarii and the transformation results obtained in this study highlight an important potential role that fungi may have in the generation of environmental androgens.  相似文献   

5.
6.
7.
8.
9.
Abstract

The title nucleoside, 4,8-diamino-6-imino-6H-1-β-d-ribofuranosylimidazo[4,5-e][1,3]-diazepine, exhibited potent anti-hepatitis B viral activity with minimum toxicity in vitro, and its 5′-triphosphate derivative strongly inhibited the bacteriophage 77 RNA polymerase.  相似文献   

10.
11.
12.
13.
A recent study published by Muslikhov et al. (Biochemistry (Moscow), 79, 435–439 (2014)) showed that arachidonic acid increases cytosolic Ca2+ concentrations in C2C12 skeletal myotubes mainly via activation of the ryanodine (RY) receptor 1. These results are consistent with the data from another study demonstrating that arachidonic acid targets RY receptor 2 in clonal and primary pancreatic β-cells (Woolcott et al., 2006). A novel and intriguing finding by Muslikhov’s group is that arachidonic acid also appears to activate the two-pore ion channel (TPC), suggesting that arachidonic acid could be a mediator in the interaction between TPCs and RY receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号