首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Smad pathway in transforming growth factor-β signaling   总被引:3,自引:0,他引:3  
The transforming growth factor b (TGF-b) superfamily comprises a great number of structurally related polypeptide growth factors, such as TGF-bs, activins, inhibins, bone morphogenic proteins (BMPs), growth differentiation factors (GDFs), M黮lerian inhibitory substance, and glial cell-derived neurotrophic factor (GDNF), etc[1]. The TGF-b superfamily members are multifunctional agonists involved in a broad spectrum of biological processes such as cell proliferation and differentiation, e…  相似文献   

2.
3.
4.
RNA interference has become a powerful tool for silencing of gene expression in mammals and plants. To determine the effect of Smad3 on transforming growth factor-beta signaling, we constructed a small interfering RNA (siRNA) targeted to Smad3. This siRNA inhibited expression of the endogenous Smad3 leading to the prevention of nuclear localization of Smad3. Further, Smad3 siRNA prevented not only anti-proliferative activity of TGF-beta1 but also TGF-beta1-inducible promoter activity.  相似文献   

5.
Here, we have investigated the therapeutic potency of EW-7197, a transforming growth factor-β type I receptor kinase inhibitor, against postsurgical adhesion band formation. Our results showed that this pharmacological inhibitor prevented the frequency and the stability of adhesion bands in mice model. We have also shown that downregulation of proinflammatory cytokines, reduce submucosal edema, attenuation of proinflammatory cell infiltration, inhibition of oxidative stress, decrease in excessive collagen deposition, and suppression of profibrotic genes at the site of surgery are some of the mechanisms by which EW-7197 elicits its protective responses against adhesion band formation. These results clearly suggest that EW-7197 has novel therapeutic properties against postsurgical adhesion band formation with clinically translational potential of inhibiting key pathological responses of inflammation and fibrosis in postsurgery patients.  相似文献   

6.
7.
The transforming growth factor-β (TGF-β) signaling pathway plays an important role in cancer cell proliferation, growth, metastasis, and apoptosis. It has been shown that TGF-β acts as a tumor suppressor in the early stages of the disease, and as a tumor promoter in its late stages. Mutations in the TGF-β signaling components, the TGF-β receptors and cytoplasmic signaling transducers, are frequently observed in colorectal carcinomas. Exploiting specific TGF-β receptor agonist and antagonist with antitumor properties may be a way of controlling cancer progression. This review summarizes the regulatory role of TGF-β signaling in the pathogenesis of colorectal cancer.  相似文献   

8.
9.
BackgroundThe hyperglycemia and hyperoxidation that characterize diabetes lead to reduced vitamin C (VC) in diabetic humans and experimentally diabetic animals. Herein, we access the effects of VC deficiency on the diabetic kidney injury and explore the underlying mechanism.Methodsl-gulonolactone oxidase conventional knockout (Gulo−/−) mice genetically unable to synthesize VC were subjected to streptozotocin-induced diabetic kidney injury and the role of VC deficiency was evaluated by biochemical and histological approaches. Rat mesangial cells were cultured to investigate the underlying mechanism.ResultsFunctionally, VC deficiency aggravates the streptozotocin-induced renal insufficiency, exhibiting the increased urine albumin, water intake, and urine volume in Gulo−/− mice. Morphologically, VC deficiency exacerbates the streptozotocin-induced kidney injury, exhibiting the increased glomerular expansion, deposition of Periodic Acid-Schiff- and Masson-positive materials, and expression of α-smooth muscle actin, fibronectin and type 4 collagen in glomeruli of Gulo−/− mice. Mechanistically, VC activates protein kinase B (Akt) to destabilize Ski and thereby induce the expression of Smad7, resulting in suppression of TGF-β/Smad signaling and extracellular matrix deposition in mesangial cells.ConclusionsVC is essential for the renal function maintenance in diabetes.General significanceCompensation for the loss of VC could be an effective remedy for diabetic kidney injury.  相似文献   

10.
We aimed at elucidating the roles of transforming growth factor (TGF)-β and Smad3 signaling in adipocyte differentiation (adipogenesis) and in the pathogenesis of obesity. TGF-β/Smad3 signaling in white adipose tissue (WAT) was determined in genetically obese (ob/ob) mice. The effect of TGF-β on adipogenesis was evaluated in mouse embryonic fibroblasts (MEF) isolated both from WT controls and Smad3 KO mice by Oil red-O staining and gene expression analysis. Phenotypic analyses of high-fat diet (HFD)-induced obesity in Smad3 KO mice compared to WT controls were performed. TGF-β/Smad3 signaling was elevated in WAT from ob/ob mice compared to the controls. TGF-β significantly inhibited adipogenesis in MEF, but the inhibitory effects of TGF-β on adipogenesis were partially abolished in MEF from Smad3 KO mice. TGF-β inhibited adipogenesis independent from the Wnt and β-catenin pathway. Smad3 KO mice were protected against HFD-induced insulin resistance. The size of adipocytes from Smad3 KO mice on the HFD was significantly smaller compared to the controls. In conclusion, the TGF-β/Smad3 signaling pathway plays key roles not only in adipogenesis but also in development of insulin resistance.  相似文献   

11.
Osteoarthritis is a common malady of the musculoskeletal system affecting the articular cartilage. The increased frequency of osteoarthritis with aging indicates the complex etiology of this disease, which includes pathophysiology and joint stability including biomechanics. The balance between anabolic morphogens and growth factors and catabolic cytokines is at the crux of the problem of osteoarthritis. One such signal is transforming growth factor-β (TGF-β). The impaired TGF-β signaling has been identified as a culprit in old mice in a recent article in this journal. This commentary places this discovery in the context of anabolic and catabolic signals and articular cartilage homeostasis in the joint.  相似文献   

12.
Selenium is essential for many aspects of human health. While selenium is known to protect against cancer and cardiovascular diseases, the role of selenium in adipose development is unknown. Here we show that selenate at non-toxic concentration exhibits an anti-adipogenic function in vitro and ex vivo. In addition, selenate induced a morphological change of these cells from fibroblast-like to spindle cell shape. However, other forms of selenium, including selenite and methylseleninic acid, showed either toxic or no effect on adipogenesis and morphology change of preadipocytes. The effects of selenate on adipogenesis and cell morphology change were blunted by the treatment with SB431542, a specific inhibitor of transforming growth factor-β1 (TGF-β1) receptor, neutralization TGF-β1 by its antibody, and knockdown of TGF-β1 in preadipocytes, suggesting a requirement of TGF-β signaling for the anti-adipogenic function of selenate. Among tested forms of selenium, selenate appears to be an effective activator of TGF-β1 expression in preadipocytes. These results indicate that selenate is a novel dietary micromineral that activates TGF-β1 signaling in preadipocytes and modulates adipogenesis.  相似文献   

13.
14.
Ali NA  Molloy MP 《Proteomics》2011,11(16):3390-3401
The transforming growth factor‐β (TGF‐β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF‐β signaling pathway; however, reports suggest that TGF‐β can activate other cellular pathways independent of Smad4. By investigating the TGF‐β‐regulated phosphoproteome, we aimed to uncover new functions controlled by TGF‐β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)‐labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF‐β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF‐β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin‐dependent kinases substrate, hepatoma‐derived growth factor and cell division kinases amongst others were induced following TGF‐β stimulation, while the phosphorylation of TRAF2 and NCK‐interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF‐β‐modulated phosphorylation responses in colon carcinoma cells.  相似文献   

15.
Breast cancer as a molecularly heterogeneous malignancy is associated with dysregulation of several signaling pathways, including transforming growth factor-β (TGF-β) signaling. On the other hand, several recent studies have demonstrated the role of microRNAs (miRNAs) in breast cancer pathogenesis. In the current study, we performed a computerized search to find miR-206 target genes that are functionally linked to the TGF-β signaling pathway. We selected LEF1, Smad2, and Snail2 genes to assess their expression in 65 breast cancer samples and their adjacent noncancerous tissues (ANCTs) in correlation with expression levels of miR-206 as well as clinicopathological characteristics of patients. miR-206 was significantly downregulated in (Estrogen receptor) ER-positive breast cancer samples compared with their corresponding ANCTs. Association analysis between expression levels of genes and demographic features of patients showed significant association between expressions of SMAD2 and LEF1 genes and body mass index ( P values of 0.03 and 0.02, respectively). miR-206 low-expression levels were associated with TNM stage, mitotic rate, and lymph node involvement ( P values of 0.02, 0.01, and 0.01 respectively). In addition, SMAD2 high-expression levels were associated with HER2 status ( P = 0.02). Consequently, our data highlight the role of TGF-β signaling dysregulation in the pathogenesis of breast cancer and warrant further evaluation of miRNAs and messenger RNA coding genes in this pathway to facilitate detection of cancer biomarkers and therapeutic targets.  相似文献   

16.
Znf45l, containing classical C2H2 domains, is a novel member of Zinc finger proteins in zebrafish. In vertebrates, TGF-β signaling plays a critical role in hematopoiesis. Here, we showed that Znf45l is expressed both maternally and zygotically throughout early development. Znf45l-depleted Zebrafish embryos display shorter tails and necrosis with reduced expression of hematopoietic maker genes. Furthermore, we revealed that znf45l locates downstream of TGF-β ligands and maintains normal level of TGF-β receptor type II phosphorylation. In brief, our results indicate that znf45l affects initial hematopoietic development through regulation of TGF-β signaling. [BMB Reports 2014; 47(1): 21-26]  相似文献   

17.
《Autophagy》2013,9(5):645-647
Transforming growth factor-β (TGF-β) has broad impacts on an array of diverse cellular functions including cell growth, differentiation, adhesion, migration, and apoptosis. Perturbations of the TGF-β signaling pathways are involved in progression of various tumors. Autophagy is a pivotal response of normal and cancer cells to environmental stresses and is induced by various stimuli. Otherwise, autophagy has an intrinsic function in tumor suppression. Recently, we demonstrated that TGF-β induces autophagy in hepatocellular carcinoma cells and mammary carcinoma cells. Autophagy activation by TGF-β is mediated through the Smad and JNK pathways. We show that siRNA-mediated knockdown of autophagy genes suppresses the growth inhibitory function of TGF-β and that autophagy activation potentiates TGF-β-mediated induction of proapoptotic genes, Bim and Bmf, in hepatoma cells. In this context, the autophagy pathway might contribute to the growth inhibitory effect of TGF-β, in conjunction with other anti-proliferative pathways downstream of TGF-β signaling. The context and manner by which the TGF-β signaling pathway regulates autophagy have implications for a better understanding of pathological and bidirectional roles of TGF-β signaling pathways in tumorigenesis.  相似文献   

18.
Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.  相似文献   

19.
20.
We used cDNA microarray to identify transforming growth factor beta (TGF-β) responsive target genes during osteoblast development and found that nephronectin (Npnt) is one such gene that is significantly down-regulated. Here we report the role of TGF-β in regulating Npnt-mediated osteoblast differentiation. We found that the effect of TGF-β on Npnt expression is associated with a change in cell morphology in a dose-dependent manner. Npnt-induced osteoblast differentiation was also inhibited by TGF-β, which changed cell morphology from cuboidal to fibroblastic, an indication that osteoblast differentiation was disrupted. Furthermore, TGF-β inhibited differentiation of osteoblasts transfected with various truncated Npnt constructs, suggesting that TGF-β can exert a down-stream effect on Npnt function. Our results suggest that TGF-β can inhibit osteoblast differentiation through various mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号