首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We studied 10 protein-coding mitochondrial genes from 19 mammalian species to evaluate the effects of 10 amino acid properties on the evolution of the genetic code, the amino acid composition of proteins, and the pattern of nonsynonymous substitutions. The 10 amino acid properties studied are the chemical composition of the side chain, two polarity measures, hydropathy, isoelectric point, volume, aromaticity, aliphaticity, hydrogenation, and hydroxythiolation. The genetic code appears to have evolved toward minimizing polarity and hydropathy but not the other seven properties. This can be explained by our finding that the presumably primitive amino acids differed much only in polarity and hydropathy, but little in the other properties. Only the chemical composition (C) and isoelectric point (IE) appear to have affected the amino acid composition of the proteins studied, that is, these proteins tend to have more amino acids with typical C and IE values, so that nonsynonymous mutations tend to result in small differences in C and IE. All properties, except for hydroxythiolation, affect the rate of nonsynonymous substitution, with the observed amino acid changes having only small differences in these properties, relative to the spectrum of all possible nonsynonymous mutations. Received: 2 January 1998 / Accepted: 25 April 1998  相似文献   

3.
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to “spy” on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.  相似文献   

4.
5.
To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today’s crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal’s core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited by overheating impossible.  相似文献   

6.
7.
Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic–exponential, exponential–linear, exponential–linear–saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.  相似文献   

8.
Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either α or β CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the β CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified β-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with β-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with α2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.  相似文献   

9.
SYNOPSIS. Current theories assert that organisms finely adjustthe order, or fluidity, of their cellular membranes in responseto changes in their physiochemical environment (e.g., pressure,temperature, salinity, etc.). However, membrane order may notbe the only property that is conserved. The most commonly observedalterations in cell membrane composition under conditions ofaltered physiochemical environment, namely changes in the phosphatidylethanolamine/phosphatidylcholine(PE/PC) ratio and the content of highly unsaturated acyl chains,are difficult to fully reconcile with the conservation of membraneorder alone. This report reviews the literature concerning twoproperties of membranes that may play vital roles in the adaptationof cellular membranes to changing environments: a) the tendencyof membranes to relax into the reversed hexagonal phase andb) the occurrence and structure of lipid-driven domains withinthe membrane. The tendency of a membrane to form the reversedhexagonal phase is a property central to a variety of importantcellular events. This tendency is tightly regulated by variationof the ratio of hexagonal phase-forming lipids to lamellar phase-forminglipids in the membrane. In most animal cells, this correspondsto the PE/PC ratio. Highly unsaturated acyl chains, in conjunctionwith cholesterol, modulate the occurrence and structure of lipid-drivenmembrane domains. These membrane domains are also criticallyinvolved in a number of key cellular processes. The changesin membrane lipid composition that occur during adaptation tothe environment may be required for the preservation of thetendency to form nonlamellar phases and of the occurrence andspecific structure of domains within the membrane, in additionto overall membrane order.  相似文献   

10.
11.
What Sex?     
《CMAJ》1956,74(6):466-467
  相似文献   

12.
13.
A close correlation (r = +0.96) exists between the permeability (at 0°, 4°, and 25°C) of H2O and nine other hydroxylic nonelectrolytes through reversed frog skin and through synthetic cellulose-acetate sheets. By the method of least squares, the data yield the following relation: log (Pfrog skin) = 0.9900 log (Pcellulose acetate) -0.1659. Both the reversed frog skin and the cellulose-acetate sheets are semipermeable (while the lipoid membrane is not), showing higher permeability to water than to any other solute used in this series. The data offer support for the theory that it is not lipid, but water polarized in multilayers by cellular proteins, that provides the living cell with its selective surface barrier.  相似文献   

14.
Integrase (IN) is the catalytic component of the preintegration complex, a large nucleoprotein assembly critical for the integration of the retroviral genome into a host chromosome. Although partial crystal structures of human immunodeficiency virus IN alone and its complex with the integrase binding domain of the host factor PSIP1/lens epithelium-derived growth factor (LEDGF)/p75 are available, many questions remain regarding the properties and structures of LEDGF-bound IN oligomers. Using analytical ultracentrifugation, multiangle light scattering, and small angle x-ray scattering, we have established the oligomeric state, stoichiometry, and molecular shapes of IN·LEDGF complexes in solution. Analyses of intact IN tetramers bound to two different LEDGF truncations allow for placement of the integrase binding domain by difference analysis. Modeling of the small angle x-ray scattering envelopes using existing structural data suggests domain arrangements in the IN oligomers that support and extend existing biochemical data for IN·LEDGF complexes and lend new insights into the quaternary structure of LEDGF-bound IN tetramers. These IN oligomers may be involved in stages of the viral life cycle other than integration, including assembly, budding, and early replication.  相似文献   

15.
Transforming growth factor β (TGF-β) signaling plays crucial functions in the regulation of craniofacial development, including palatogenesis. Here, we have identified connective tissue growth factor (Ctgf) as a downstream target of the TGF-β signaling pathway in palatogenesis. The pattern of Ctgf expression in wild-type embryos suggests that it may be involved in key processes during palate development. We found that Ctgf expression is downregulated in both Wnt1-Cre; Tgfbr2fl/fl and Osr2-Cre; Smad4fl/fl palates. In Tgfbr2 mutant embryos, downregulation of Ctgf expression is associated with p38 mitogen-activated protein kinase (MAPK) overactivation, whereas loss of function of Smad4 itself leads to downregulation of Ctgf expression. We also found that CTGF regulates its own expression via TGF-β signaling. Osr2-Cre; Smad4fl/fl mice exhibit a defect in cell proliferation similar to that of Tgfbr2 mutant mice, as well as cleft palate. We detected no alteration in bone morphogenetic protein (BMP) downstream targets in Smad4 mutant palates, suggesting that the reduction in cell proliferation is due to defective transduction of TGF-β signaling via decreased Ctgf expression. Significantly, an exogenous source of CTGF was able to rescue the cell proliferation defect in both Tgfbr2 and Smad4 mutant palates. Collectively, our data suggest that CTGF regulates proliferation as a mediator of the canonical pathway of TGF-β signaling during palatogenesis.  相似文献   

16.
17.
18.
19.
Cell surface analysis often requires manipulation of cells prior to examination. The most commonly employed procedures are centrifugation at different speeds, changes of media during washing or final resuspension, desiccation (either air drying for contact angle measurements or freeze-drying for sensitive spectroscopic analysis, such as X-ray photoelectron spectroscopy), and contact with hydrocarbon (hydrophobicity assays). The effects of these procedures on electrophoretic mobility, adhesion to solid substrata, affinity to a number of Sepharose columns, structural integrity, and cell viability were systematically investigated for a range of model organisms, including carbon- and nitrogen-limited Psychrobacter sp. strain SW8 (glycocalyx-bearing cells), Escherichia coli (gram-negative cells without a glycocalyx), and Staphylococcus epidermidis (gram-positive cells without a glycocalyx). All of the cell manipulation procedures severely modified the physicochemical properties of cells, but with each procedure some organisms were more susceptible than others. Considerable disruption of cell surfaces occurred when organisms were placed in contact with a hydrocarbon (hexadecane). The majority of cells became nonculturable after air drying and freeze-drying. Centrifugation at a high speed (15,000 × g) modified many cell surface parameters significantly, although cell viability was considerably affected only in E. coli. The type of washing or resuspension medium had a strong influence on the values of cell surface parameters, particularly when high-salt solutions were compared with low-salt buffers. The values for parameters obtained with different methods that allegedly measure similar cell surface properties did not correlate for most cells. These results demonstrate that the methods used to prepare cells for cell surface analysis need to be critically investigated for each microorganism so that the final results obtained reflect the nature of the in situ microbial cell surface as closely as possible. There is an urgent need for new, reliable, nondestructive, minimally manipulative cell surface analysis techniques that can be used in situ.  相似文献   

20.
R G Miller 《Biometrics》1983,39(4):1077-1081
The asymptotic efficiency of the Kaplan-Meier product-limit estimator, relative to the maximum likelihood estimator of a parametric survival function, is examined under a random-censoring model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号