首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IFN-gamma is an important mediator of cellular resistance against microbial pathogens and tumor cells due in part to its potent capacity to activate macrophages for enhanced cytotoxicity. The present study demonstrates that TNF-alpha regulates the expression of enhanced antimicrobial activity by triggering IFN-gamma primed macrophages to kill or inhibit intracellular Toxoplasma gondii. Resident mouse macrophages stimulated with rIFN-gamma at levels up to 2500 U/ml failed to display enhanced antitoxoplasmal activity when cultured in vitro under low endotoxin conditions (less than 10 pg/ml), but were triggered by addition of small amounts of LPS (0.1 ng/ml). A similar requirement for LPS as a second signal necessary to trigger antitoxoplasmal activity was observed when IFN-gamma was administered to mice in vivo. The essential nature of this triggering step allowed us to explore the role of cytokines that act as endogenous regulators of macrophage activation. rTNF-alpha, although unable to confer antitoxoplasmal activity when used alone to treat macrophages, was capable of triggering IFN-gamma-primed macrophages cultured under low endotoxin conditions. The ability of TNF-alpha to trigger IFN-gamma-primed macrophages was blocked by rabbit anti-TNF-alpha polyclonal antisera but was not affected by polymyxin B indicating that TNF-alpha triggering was not due to contamination with LPS. Collectively, these findings demonstrate that TNF-alpha performs an important regulatory role in the expression of enhanced anti-microbial activity by IFN-gamma-primed macrophages.  相似文献   

2.
The cytokine tumor necrosis factor-alpha (TNF alpha) is one of the major mediators of septic shock. Because vasodilation is a hallmark of sepsis and decreased vascular responsiveness has been implicated in the pathogenesis of septic shock, we studied the effect of TNF alpha on the mean blood pressure in conscious rats and vascular responsiveness to vasoconstrictors ex vivo using the standard organ bath method. Intravenous infusion of TNF alpha (0.006 or 0.06 mg/kg/hr for 10 hours) decreased mean blood pressure in a dose-dependent fashion. Contractile responses to norepinephrine were depressed dose-dependently in the aortic rings both with and without its endothelium. Aortic contractions by potassium depolarization were also depressed. These results suggest that TNF alpha induces non-specific vascular hyporesponsiveness, which is independent of the presence of the endothelium. The TNF alpha-induced vascular hyporesponsiveness might contribute to the hypotensive action of TNF alpha.  相似文献   

3.
4.
Accumulating evidence demonstrates that adipose tissue is a major site of tumor necrosis factor-alpha (TNF-alpha) gene expression, which is markedly high in obese animals and may contribute to obesity-linked insulin resistance. We now report that recombinant murine TNF-alpha triggers the apoptotic degeneration of brown adipocytes differentiated in culture. Moreover, noradrenaline, which has been described as having trophic effects on brown fat and accelerating the differentiation of brown adipocytes, is capable of dose-dependently preventing the TNF-alpha-induced apoptosis of brown fat cells. Since obesity is characterized by greatly increased TNF-alpha production and reduced catecholaminergic activity, apoptosis was studied in the brown fat of genetically obese animals. In situ DNA fragmentation analysis revealed a larger number of apoptotic cells in the brown fat of obese (fa/fa) than in that of lean (+/+) Zucker rats. The exposure of obese rats to low temperatures for 7 days, which increases the sympathetic activity of brown adipose tissue, significantly reduces the number of apoptotic brown adipocytes. We hypothesize that TNF-alpha may play a significant role in the control of brown fat homeostasis.  相似文献   

5.
6.
The effect of recombinant tumor necrosis factor-alpha (rTNF alpha) on human natural killer (NK) function was examined. Lysis of both the NK-sensitive K562 erythroleukemia line and the relatively insensitive renal carcinoma line Cur by nonadherent peripheral blood lymphocytes was significantly enhanced as a result of an 18-hr preincubation with either rTNF alpha or recombinant interleukin 2 (rIL 2). When cells were preincubated with rTNF alpha and low doses of rIL 2 (1 to 10 U/ml), marked additional augmentation of lysis of both targets was noted which was greater than that caused by either cytokine alone. Similar results were observed when responses of CD16+ large granular lymphocytes selected with the fluorescence-activated cell sorter after staining with the NK-specific monoclonal antibody Leu-11 were examined, indicating that the action of the cytokines was directly on the cytotoxic cells. Augmentation of tumor cell lysis could not be ascribed to a cytolytic activity of rTNF alpha on the targets, because no combination of rIL 2, rTNF alpha, or interferon-gamma caused lysis of K562 or Cur. By flow cytometric analysis, it was found that expression of IL 2 receptors was induced on purified CD16+ large granular lymphocytes by rTNF alpha alone and to an even greater degree by the combination of rTNF alpha and rIL 2. Additional analysis of the expression of surface antigens and blocking studies with monoclonal antibodies showed that enhanced tumor cell lysis was not caused by the augmentation of leukocyte function-associated antigen-1-mediated effector/target interactions. These data indicate that rTNF alpha alone, or in combination with rIL 2, directly augments NK cytotoxic activity.  相似文献   

7.
Tumor necrosis factor-alpha gene expression in the tissues of normal mice.   总被引:6,自引:0,他引:6  
Although TNF-alpha is traditionally associated with macrophage activation during neoplasia and acute inflammation, recent Northern blot hybridization studies indicate that gene expression occurs in the absence of pathology. In order to identify the cellular sources of endogenous message and protein, normal mouse tissues were tested for TNF-alpha mRNA using in situ hybridization and for the corresponding protein by immunocytochemistry. Unexpectedly, specific TNF-alpha message was readily detected in hepatocytes, kidney tubule epithelial cells, various populations of spleen cells and neurons. TNF-alpha protein was present in the same liver and kidney cells as those that contained TNF-alpha mRNA, was low in spleen cells, and was absent in neurons. These results suggest that cells other than macrophages are the major sources of TNF-alpha gene products in normal tissues, indicate that regulation is accomplished by more than one mechanism, and are consistent with the postulate that products of this gene contribute to normal physiological processes.  相似文献   

8.
9.
10.
Tumor necrosis factor-alpha converting enzyme.   总被引:4,自引:0,他引:4  
Tumor necrosis factor-alpha converting enzyme (TACE/ADAM17/CD156q) is a member of the 'A Disintegrin And Metalloprotease', or ADAM, family. It is a multi-domain, type I transmembrane protein that includes an extracellular zinc-dependent protease domain. TACE expression is largely constitutive, but the surface pool is downregulated following cell activation. Cleavage by TACE generates the soluble forms of tumor necrosis factor, transforming growth factor-alpha, and other proteins from their membrane-bound precursors (a phenomenon termed 'shedding'). The recognition of substrates by TACE is poorly understood, but sites distal to the active site are probably involved, and in at least some cases both enzyme and substrate must be membrane-anchored. Cell-activators increase the rate of shedding. Activator-induced shedding is mediated by intracellular kinase cascades, but how these cascades affect the shedding machinery is unknown. The pharmaceutical industry is attempting to design specific TACE inhibitors to treat inflammatory diseases.  相似文献   

11.
Tumor necrosis factor-alpha (TNF-alpha) has been associated with cachexia and is known to regulate multiple inflammatory cell (neutrophil and macrophage) responses. We tested the hypothesis that neutrophils and macrophages accumulate in the extensor digitorum longus (EDL) and soleus muscles of mice after chronic TNF-alpha administration. Murine recombinant TNF-alpha (approximately 100 microg x kg(-1) x day(-1)) in vehicle solution or vehicle solution alone (sham) was administered to C57BL/6 mice for 7 days via osmotic minipumps. In EDL muscles from TNF-alpha-treated mice, neutrophil and macrophage concentrations were elevated seven- and threefold, respectively, compared with sham mice. Neutrophil and macrophage concentrations were also elevated five- and twofold, respectively, in solei of TNF-alpha- relative to sham-treated mice. Treatment with TNF-alpha elevated ubiquitin content by approximately 25% relative to sham values for both the EDL and soleus muscles; however, these elevations were not statistically significant. No differences were observed between TNF-alpha- and sham-treated mice in body weight, food consumption, muscle mass, myofiber cross-sectional area, carbonyl groups, total protein content, or relative abundance of myosin heavy chain protein. Furthermore, no overt signs of muscle injury or regeneration were observed in muscles from TNF-alpha-treated mice in either the EDL or soleus muscles. These observations suggest that 7 days of TNF-alpha administration promote muscle inflammation as indicated by the accumulation of neutrophils and macrophages without overt signs of atrophy, injury, or regeneration.  相似文献   

12.
The effect of exogenous RNA on many cellular functions has been studied in a variety of eukaryotic cells but there are few reports on macrophages. In the present study, it is demonstrated that cytoplasmatic RNA extracted from rat macrophages stimulated with Escherichia coli lipopolysaccharide (LPS), referred to as L-RNA, induced the release of TNF-alpha and IL-1 from monolayers of peritoneal resident macrophages. The activity of L-RNA was not altered by polymyxin B but was abolished by ribonuclease (RNase) pretreatment, indicating the absence of LPS contamination and that the integrity of the polynucleotide chain is essential for this activity. Both the poly A(-) and poly A(+) fractions obtained from L-RNA applied to oligo(dT)-cellulose chromatography induced TNF-alpha and IL-1 release. The L-RNA-induced cytokine release was inhibited by dexamethasone and seemed to be dependent on protein synthesis since this effect was abolished by cycloheximide or actinomycin-D. The LPS-stimulated macrophages, when pre-incubated with [5-(3)H]-uridine, secreted a trichloroacetic acid (TCA) precipitable material which was sensitive to RNase and KOH hydrolysis, suggesting that the material is RNA. This substance was also released from macrophage monolayers stimulated with IL-1beta but not with TNF-alpha, IL-6 or IL-8. The substance secreted ((3)H-RNA) sediments in the 4-5S region of a 5-20% sucrose gradient. These results show that L-RNA induces cytokine secretion by macrophage monolayers and support the idea that, during inflammation, stimulated macrophages could release RNA which may further induce the release of cytokines by the resident cell population.  相似文献   

13.
The early monocyte infiltration observed in normal wound repair and in a number of pathologic processes precedes the epithelial and connective tissue proliferative responses, suggesting that the monocyte/macrophage may be an important source of growth factors for these tissues. In culture, activated macrophages secrete growth factors active on fibroblasts, smooth muscle, endothelium, and epithelium. This report demonstrates that activated human alveolar macrophages express the gene for transforming growth factor-alpha (TGF-alpha) in an inducible manner and secrete a factor into the culture medium that is functionally and immunologically identical to TGF-alpha. Two different molecular species of TGF-alpha activity (approximately 8,500-12,000 and 28,500 daltons) are identified in macrophage-conditioned medium. These observations establish the macrophage as a diploid human cell capable of synthesizing and secreting TGF-alpha. The activated macrophage therefore represents a cellular source of a mitogenic factor that is potentially important in epithelial proliferation and repair.  相似文献   

14.
Tumor necrosis factor-alpha (TNF) release by monocytes and macrophages may be an important determinant of the physiologic response of the host to neoplastic disease; however, the mechanisms which regulate TNF release by macrophages in hosts with neoplastic diseases are poorly understood. The purpose of this study was to determine if cell membranes and growth medium from human leukemia cell lines and solid tumor cell lines induced TNF release by cultured human blood monocyte-derived macrophages. The capacity for TNF release and direct tumor killing was highest in monocytes cultured for 7 to 11 days. Cell membranes and culture media from K562 erythroleukemia and several small cell lung carcinoma cell lines, including H82, induced the release of up to 1500 TNF units per 10(6) macrophages over 24 hr. By contrast, allogeneic peripheral blood lymphocytes, cell membranes from normal mixed donor peripheral blood leukocytes, or growth medium from normal embryonic lung fibroblasts induced the release of little or no TNF during culture up to 24 hr, suggesting that this macrophage response was specific for tumor cells. Release of TNF by tumor-stimulated macrophages was gradual, peaking 24 hr following the addition of stimuli. Induction of macrophage TNF release was concentration dependent, with half-maximal TNF levels induced by 12.5 and 25 micrograms/ml cell membranes prepared from K562 and H82, respectively. Pretreatment of tumor cell membranes with polymixin B, which inhibits many of the actions of endotoxin, failed to neutralize tumor induction of TNF, suggesting that endotoxin was not responsible for this activity. Depletion of macrophages by treatment with 3C10 monoclonal antibody and complement abrogated tumor-induced TNF release, indicating that macrophages were the source of the secreted TNF. HPLC analysis of H82 growth medium demonstrated a single peak of macrophage activating activity with approximate 40-kDa molecular weight. We have demonstrated that cell membranes and growth medium from some human leukemia and solid tumor cell lines, but not from normal human cells, induce human peripheral blood monocytes and monocyte-derived macrophages to release functionally active TNF. This process may contribute to the host response to some neoplastic diseases.  相似文献   

15.
16.
17.
Osteoclast progenitors differentiate into mature osteoclasts in the presence of receptor activator of NF-kappaB (RANK) ligand on stromal or osteoblastic cells and monocyte macrophage colony-stimulating factor (M-CSF). The soluble RANK ligand induces the same differentiation in vitro without stromal cells. Tumor necrosis factor-alpha (TNF-alpha), a potent cytokine involved in the regulation of osteoclast activity, promotes bone resorption via a primary effect on osteoblasts; however, it remains unclear whether TNF-alpha can also directly induce the differentiation of osteoclast progenitors into mature osteoclasts. This study revealed that TNF-alpha directly induced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), which produced resorption pits on bone in vitro in the presence of M-CSF. The bone resorption activity of TNF-alpha-induced MNCs was lower than that of soluble RANK ligand-induced MNCs; however, interleukin-1beta stimulated this activity of TNF-alpha-induced MNCs without an increase in the number of MNCs. In this case, interleukin-1beta did not induce TRAP-positive MNC formation. The osteoclast progenitors expressed TNF receptors, p55 and p75; and the induction of TRAP-positive MNCs by TNF-alpha was inhibited completely by an anti-p55 antibody and partially by an anti-p75 antibody. Our findings presented here are the first to indicate that TNF-alpha is a crucial differentiation factor for osteoclasts. Our results suggest that TNF-alpha and M-CSF play an important role in local osteolysis in chronic inflammatory diseases.  相似文献   

18.
The effect of tumor necrosis factor-alpha (TNF) on cyclooxygenase-2 (COX-2) expression in the renal outer medulla (OM) was determined in a model of dihydrotachysterol (DHT)-induced hypercalcemia. Increases in serum calcium and water intake were observed during ingestion of a DHT-containing diet in both wild type (WT) and TNF deficient mice (TNF(-/-)). Polyuria and a decrease in body weight were observed in response to DHT treatment in WT and TNF(-/-) mice. A transient elevation in urinary TNF was observed in WT mice treated with DHT. Moreover, increased urinary levels of prostaglandin E(2) (PGE(2)) and a corresponding increase in COX-2 expression in the OM were observed in WT mice fed DHT. Increased COX-2 expression was not observed in TNF(-/-) mice fed DHT, and the characteristics of PGE(2) synthesis were distinct from those in WT mice. This study demonstrates that COX-2 expression in the OM, secondary to hypercalemia, is TNF-dependent.  相似文献   

19.
20.
Chronic disease states are associated with elevated levels of inflammatory cytokines that have been demonstrated to lead to severe muscle wasting. A mechanistic understanding of muscle wasting is hampered by limited in vivo cytokine models which can be applied to emerging mouse mutants as they are generated. We developed a simple and novel approach to induce adult mouse skeletal muscle wasting based on direct gene transfer of an expression vector encoding the secreted form of the murine tumor necrosis factor-alpha (mTNFalpha). This procedure results in the production of elevated levels of circulating mTNFalpha followed by body weight loss, upregulation of Atrogin1, and muscle atrophy, including muscles distant from the site of gene transfer. We also found that mTNFalpha gene transfer resulted in a significant inhibition of regeneration following muscle injury. We conclude that in addition to being a potent inducer of cachexia, TNFalpha is a potent inhibitor of myogenesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号