首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
To understand the role of serotonin (5-hydroxytryptamine; 5-HT)-1A receptors in the treatment of anxiety and the development of tolerance to benzodiazepines the present study was designed to monitor the responsiveness of postsynaptic 5-HT-1A receptors following repeated administration of diazepam and buspirone. Results show that tolerance in the anxiolytic profile is produced following repeated administration (2 weeks) of diazepam (2 mg/kg) but not buspirone (0.5 mg/kg). The behavioral effects of 8-OH-DPAT at a dose of 0.25 mg/kg were monitored 3 days after repeated administration of saline or buspirone or diazepam. The results show that 8-OH-DPAT elicited forepaw treading was smaller in repeated diazepam but not repeated buspirone injected rats, while hyperlocomotive effects of 8-OH-DPAT were smaller in both repeated buspirone and repeated diazepam injected rats. The results suggest that postsynaptic 5-HT-1A receptor-dependent responses were attenuated following long-term administration of diazepam but not buspirone. Role of 5-HT-1A receptors in the development of tolerance to the anxiolytic effects of diazepam but not buspirone is discussed.  相似文献   

2.
Dopamine (DA) antagonists promote the secretion of prolactin (PRL) from the anterior pituitary gland by blocking the effects of DA at receptors in the pituitary itself. Thus, comparison of the properties of these receptors with DA receptors in the striatal, meso-limbic and meso-cortical regions is of interest. Evidence is presented that clozapine, RMI-81, 582 (a morphanthridine derivative), trebenzomine (CI-686, a chromanamine derivative) and sultopride (a benzamide) have much weaker effects on human and rat PRL secretion than would be predicted by their anti-psychotic potency. The reverse is true of two other benzamides, sulpiride and metoclopramide. Classical neuroleptics of the phenothiazine, butyrophenone and thioxanthene types appear to affect rat and human PRL secretion in a manner which is mainly but not entirely consistent with their known effects on striatal and meso-limbic/meso-cortical postsynaptic DA receptors. Preliminary studies indicate presynaptic receptors which affect prolactin secretion are not present in rats. Supersensitivity may develop in the tubero-infundibular (TI) system after chronic neuroleptic treatment but altered sensitivity of these receptors was not found in schizophrenics given apomorphine.  相似文献   

3.
We have investigated dopamine (DA) receptors in estradiol-induced PRL-secreting pituitary tumors and intact pituitary tissue. Female rats were injected at 3-week intervals with 2 mg estradiol valerate (EV) or with diluent. After 21 weeks, adenomatous changes in the pituitary gland of EV-treated rats were seen and plasma PRL concentrations reached 2 micrograms/ml. Bromocriptine (2.5 mg/kg) was then administered for 1 month to half of the control rats and half of the rats bearing tumors. Anterior pituitary weight was increased in EV-treated rats compared to controls while the affinity and the density of DA receptors as assessed by [3H]spiperone binding remained unchanged. Bromocriptine (CB-154) induced a 70% decrease in the density of DA receptors without any change in affinity both in normal pituitaries and in tumors. Concurrently, the elevated plasma concentrations of PRL in the tumor bearing rats were decreased to control values following the CB-154 treatment. Our data suggest that rats with primary estrogen-induced PRL secreting tumors have normal pituitary DA receptors.  相似文献   

4.
H Wachtel  W Kehr  G Sauer 《Life sciences》1983,33(26):2583-2597
2-Bromolisuride (2-Br-LIS), a derivative of the ergot dopamine (DA) agonist lisuride, was investigated in rodents in comparison with the DA antagonist haloperidol with regard to its influence on DA related behaviour, cerebral DA metabolism and prolactin (PRL) secretion. 2-Br-LIS produced catalepsy in mice (ED50 3.3 mg/kg i.p.), antagonized apomorphine-induced stereotypies in mice (ED50 0.4 mg/kg i.p.), antagonized DA agonist-induced stereotypies in rats (0.1-1.56 mg/kg i.p.), inhibited locomotor activity in rats (0.025-6.25 mg/kg i.p.), antagonized the hyperactivity produced by various DA agonists in rats (0.025-6.25 mg/kg i.p.) and inhibited the apomorphine-induced hypothermia in mice (0.05-0.78 mg/kg i.p.). 2-Br-LIS (0.03-10 mg/kg i.p.) stimulated DA biosynthesis and DOPAC formation in the striatum and DA rich limbic system of rats, but had no effect on serotonin turnover. In striatum and limbic forebrain of gamma-butyrolactone-pretreated rats 2-Br-LIS reversed the apomorphine-induced inhibition of DOPA accumulation. 2-Br-LIS (0.03 - 3 mg/kg) enhanced PRL secretion in intact male rats. These findings indicate DA antagonistic properties of 2-Br-LIS presumably due to blockade of central pre- and postsynaptic DA receptors being of approximately the same order of potency as haloperidol. 2-Br-LIS is the first ergot compound with definite antidopaminergic properties suggesting its potential usefulness as a neuroleptic.  相似文献   

5.
Dopamine (DA) and zinc (Zn++) share common mechanisms in their inhibition of prolactin (PRL) secretion. Both substances are present in the same brain areas, where Zn++ is released together with DA, suggesting a modulatory effect of Zn++ on dopaminergic receptors. The aim of the present study was to evaluate the effect of Zn++ supplementation on basal and PRL secretion stimulated by metoclopramide (MCP), a dopaminergic antagonist. Seven healthy men were evaluated in controlled study, where MCP (5 mg) was given intravenously, before and after 3 months of oral Zn++ (25 mg) administration. Our results indicate that chronic Zn++ administration does not change basal or MCP-stimulated plasma PRL secretion suggesting that, in humans, Zn++ does not interfere on PRL secretion mediated through dopaminergic receptors.  相似文献   

6.
Interaction between opiates and hypothalamic dopamine on prolactin release.   总被引:1,自引:0,他引:1  
Opiate stimulation of prolactin (PRL) release appears to involve a hypothalamic mechanism(s). The present study utilized both central acting drugs and direct measurement of hypothalamic dopamine (DA) to investigate this problem. Administration of L-dopa, the precursor of DA; piribedil, a DA agonist; or amineptine, a DA reuptake inhibitor, each decreased serum PRL concentrations. Morphine sulfate (MS) and haloperidol (HAL) significantly increased serum PRL levels. L-dopa and piribedil reversed the stimulatory effect of MS on serum PRL concentrations by increasing dopamine activity. MS blocked the inhibitory effects of amineptine on serum PRL release, possibly by decreasing the concentration of DA available for reuptake. Injection of subeffective doses of HAL concurrently with a subeffective dose of MS increased serum PRL concentrations, by an additive inhibitory action on dopaminergic activity. β-endorphin, an endogenous opioid peptide, decreased the rate of DA turnover in the median eminence, and increased serum PRL levels approximately 10 - fold. These observations indicate that opiates stimulate PRL release by decreasing DA activity in the median eminence.  相似文献   

7.
Abstract: A serotonin (5-HT)1A receptor partial agonist, buspirone, potentiates the clinical antidepressant properties of 5-HT reuptake inhibitors (SSRIs). Herein, we examined the interaction of buspirone with two SSRIs, duloxetine and fluoxetine, on extra-cellular levels of 5-HT, dopamine (DA), and noradrenaline (NAD) in single dialysate samples of freely moving rats. Duloxetine (5.0 mg/kg, s.c.) and fluoxetine (10.0 mg/kg, s.c.) increased dialysate levels of DA (65 and 60% vs. basal values, respectively), NAD (400 and 90%, respectively), and 5-HT (130 and 110%, respectively) in the frontal cortex (FCX). Buspirone (2.5 mg/kg, s.c.) similarly elevated levels of DA (100%) and NAD (160%) but reduced those of 5-HT (−50%). Administered with buspirone, the ability of duloxetine and fluoxetine to increase 5-HT levels was transiently inhibited (over 60 min), although by the end of sampling (180 min) their actions were fully expressed. In contrast, buspirone markedly and synergistically facilitated the elevation in DA levels elicited by duloxetine (550%) and fluoxetine (240%). Furthermore, buspirone potentiated the induction of NAD levels by duloxetine (750%) and fluoxetine (350%). These data suggest that a reinforcement in the influence of SSRIs on DA and, possibly, NAD but not 5-HT release in FCX may contribute to their increased antidepressant activity in the presence of buspirone. More generally, they support the hypothesis that a reinforcement in dopaminergic transmission in the FCX contributes to the actions of SSRIs and other antidepressant drugs.  相似文献   

8.
Previous studies in Rhesus monkeys have demonstrated that a dopamine (DA) infusion rate of 0.1 microgram/kg X min induces peripheral DA levels similar to those measured in hypophysial stalk blood and normalizes serum prolactin (PRL) levels in stalk-transected animals. We therefore examined the effect of such DA infusion rate on basal and thyrotropin-releasing hormone (TRH)-stimulated PRL secretion in both normal cycling women and women with pathological hyperprolactinemia. 0.1 microgram/kg X min DA infusion fully normalized PRL serum levels in 8 normal cycling women whose endogenous catecholamine synthesis had been inhibited by alpha-methyl-p-tyrosine (AMPT) pretreatment. Furthermore, DA significantly reduced, but did not abolish, the rise in serum PRL concentrations induced by both acute 500 mg AMPT administration and 200 micrograms intravenous TRH injection in normal women. A significant reduction in serum PRL levels in response to 0.1 microgram/kg X min DA, similar to that observed in normal cycling women when expressed as a percentage of baseline PRL, was documented in 13 amenorrheic patients with TRH-unresponsive pathological hyperprolactinemia. However, a marked rise was observed in the serum PRL of the same patients when TRH was administered during the course of a 0.1-microgram/kg X min DA infusion. The PRL response to TRH was significantly higher during DA than in basal conditions in hyperprolactinemic patients, irrespective of whether this was expressed as an absolute increase (delta PRL 94.4 +/- 14.2 vs. 17.8 +/- 14.1 ng/ml, p less than 0.002) or a percent increase (delta% PRL 155.4 +/- 18.9 vs. 17.9 +/- 7.1, p less than 0.0005), and there was a significant linear correlation between the PRL decrements induced by DA and the subsequent PRL responses to TRH. These data would seem to show that the 0.1-microgram/kg X min DA infusion rate reduces basal PRL secretion and blunts, but does not abolish, the PRL response to both TRH and acute AMPT administration. The strong reduction in PRL secretion and the restoration of the PRL response to TRH by 0.1 microgram/kg X min DA infusion in high majority of hyperprolactinemic patients, seem to indicate that both PRL hypersecretion and abnormal PRL response to TRH in women with pathological hyperprolactinemia are due to a relative DA deficiency at the DA receptor site of the pituitary lactotrophs.  相似文献   

9.
C A Sagrillo  J L Voogt 《Life sciences》1992,50(20):1479-1489
Dopamine (DA) neurons participate in tonic inhibition of prolactin (PRL), whereas beta-endorphin (beta-End) and serotonin (5-HT) neurons appear to be important stimulatory links for nocturnal PRL surges that occur throughout the first half of pregnancy in the rat. The purpose of this study was to determine how these neuronal components might be organized within the pathway controlling PRL release during gestation. Maximal stimulation of DA receptors with the agonist bromocriptine mesylate (Bromo) completely blocked the PRL response to beta-End (100 ng/microliters/min for 15 min) given intracerebroventricularly (i.c.v.) on day 8 of pregnancy. DA receptor blockade, produced by implanting a 25 mg pellet of haloperidol (Hal) on day 7 of pregnancy, resulted in PRL levels of 500-600 ng/ml by the following morning. beta-End i.c.v. or 250 mg/ml/kg BW of the DA synthesis inhibitor, alpha-methyl-p-tyrosine (alpha-MPT), given during the intersurge period, were equally effective in significantly increasing PRL (p less than 0.01) above pretreatment levels. beta-End and alpha-MPT evoked similar increases in rats pretreated with Hal, suggesting the stimulatory effect of beta-End on nocturnal PRL surges may primarily be due to DA inhibition. The next objective was to determine how beta-End and 5-HT might interact to stimulate the nocturnal surge. Day 8 pregnant rats were infused continuously with the opioid receptor blocker, naloxone hydrochloride (Nal), at a rate of 2.0 mg/10 min from 1000-1300 h. The PRL response to an injection of 20 mg/kg BW 5-hydroxytryptophan (5-HTP) at 1200 h was greatly attenuated, compared to controls infused with saline instead of Nal. This suggests that 5-HT stimulates PRL, at least in part, by an action at opioid receptors. Distilled H2O or 10 mg/kg BW of the selective S2 receptor blocker, ketanserin tartrate (Ket), was given intraperitoneally (i.p.) during the intersurge period on day 8 of pregnancy. All animals demonstrated an identical response to beta-End given 2 hours later, regardless of the type of pretreatment. It appears that beta-End does not stimulate PRL by way of an S2 receptor. Although beta-End induced a significant increase in PRL on day 16 of pregnancy, the response was attenuated by more than 60% compared to the response on day 8 of pregnancy. This attenuation may involve placental lactogens, shown to be secreted during this time and to inhibit PRL secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Transdihydrolisuride (TDHL), a 9, 10-dihydrogenated analogue of the ergot dopamine (DA) agonist lisuride (LIS), was investigated for its influence on central dopaminergic functions in rats and mice after single i.p. administration. TDHL (0.39–25 mg/kg) unexpectedly induced catalepsy and antagonized apomorphine-induced stereotypes in rats; it was approx. 3–5 times less potent than the DA antagonist haloperidol. TDHL (0.025–6.25 mg/kg) caused hypokinesia and antagonized the apomorphine-induced hyperactivity in rats. Pre-treatment with TDHL (0.78–12.5 mg/kg) which per se did not alter thermoregulation at room temperature, antagonized the hypothermia induced by the DA agonist apomorphine (5 mg/kg i.p.) in mice. These DA antagonistic properties contrasted with the prolactin (PRL) lowering effect of TDHL (0.01–10 mg/kg p.o.) in reserpinized female rats thus indicating DA agonist function. PRL inhibition tended to be longer lasting (>8h) than after LIS (0.01–1 mg/kg p.o.) with comparable potency. In healthy volunteers TDHL (0.2–1 mg p.o.) effectively lowered PRL levels with similar potency but with a markedly longer duration of action than LIS (>24h after 0.5 mg TDHL). In contrast to the side effects after acute LIS treatment, no comparable adverse reactions such as nausea, emesis or postural hypotension typical for DA agonists could be observed with effective PRL lowering doses of TDHL. The unique profile of TDHL on DA functions suggests its usefulness as a potent, longlasting PRL inhibitor with less unwanted effects. The behavioural findings indicate the potential usefulness of TDHL as a neuroleptic, which due to its partial DA agonistic action, should lack typical extrapyramidal or neuroendocrine side effects of classic DA receptor blocking agents. Possible implications of the dual function of TDHL upon central DA receptors are discussed with regard to the incidence of side effects or selectivity of action for other conceivable therapeutic indications.  相似文献   

11.
《Endocrine practice》2019,25(7):684-688
Objective: To evaluate the effect of raloxifene on prolactin (PRL) levels in addition to dopamine agonist (DA) therapy in patients with prolactinoma.Methods: We conducted a retrospective chart review of 14 patients with prolactinoma on stable dose of DA for 6 months who received raloxifene 60 mg daily, as PRL could not be normalized despite being on fairly high doses of DA. Patients were informed that raloxifene is not approved by the Food and Drug Administration for prolactinoma treatment. PRL level was measured at 1 to 6 months after starting raloxifene and at 1 to 3 months following its discontinuation. Raloxifene was stopped in 8 out of 14 patients after 2 (1 to 6) months of treatment as the absolute change in PRL level was felt to be small.Results: The median age and female/male sex ratios were 50 years (range 18 to 63 years), 6/8 respectively. The baseline DA dose was 3 mg/week (0.5 to 7 mg/week) for cabergoline and 15 mg/day for bromocriptine. Ten patients had an absolute and percentage decrease in PRL of 8.3 ng/mL (1.5 to 54.2 ng/mL) and 25.9% (8 to 55%) from baseline, respectively, after 1 to 6 months on raloxifene treatment. Among 10 patients with a decrease in PRL level, 2 (20%) achieved PRL normalization. Two patients had no change in PRL and two patients had an increase in PRL level by 22.8 ng/mL and 8.8 ng/mL (47% and 23.6%), respectively.Conclusion: Raloxifene was associated with a 25.9% (8 to 55%) decrease in PRL level in 10/14 (71%) patients with prolactinoma who were on stable doses of DA including 2 patients (14%) who achieved normoprolactinemia.Abbreviations: CV = coefficient of variation; DA = dopamine agonist; FSH = follicule-stimulating hormone; LH = luteinizing hormone; PRL = prolactin; PTTG = pituitary tumor transforming gene  相似文献   

12.
Prolactin (PRL) release induced by TRH was examined on each day of the estrous cycle in female rats in which pituitary dopamine (DA) receptors were blocked pharmacologically. The objective was to determine if an interaction exists between hypothalamic inhibitory and releasing hormones with regard to prolactin (PRL) secretion. Domperidone (0.01 mg/rat i.v.) followed 5 minutes later by the administration of the DA agonist 2-Br-alpha-ergocryptine maleate (CB-154, 0.5 mg/rat i.v.) were used to produce a transient (less than 1 hr) dopamine blockade. One hour later, thyrotropin-releasing hormone (TRH, 1.0 microgram/rat i.v.) was given to stimulate PRL release. On the morning of proestrus, TRH released a significantly greater quantity of PRL into the plasma after DA antagonism compared to control animals which did not receive the dopamine antagonist. Dopamine antagonism also enhanced the effectiveness of TRH on the mornings of estrus and metestrus. The response on estrus was significantly greater than the response on proestrus. However by the morning of diestrus, TRH-"releasable" PRL was greatly diminished. Our results suggest that DA antagonism is able to shift differing quantities of PRL into a TRH "releasable" pool on several days of the estrous cycle and that the control of this mechanism is acute.  相似文献   

13.
The study has shown that activation of mu-opioid receptors by a highly selective agonist DAGO (100 microg/kg) results in a significant increase of the immune response to antigen (SRBC, 5% 10(8)) in CBA mice. Haloperidol (2 mg/kg), a selective antagonist of the postsynaptic dopamine (DA) receptors, prevented immunostimulating effect of DAGO. In contrast, selective D1--antagonist SCH 23390 (1 mg/kg) did not affect on DAGO-induced enhancing of immune reactivity. At the same time, the blockade of both types of DA receptors (D1 and D2) caused similar immunosuppressing effects. These data suggest a possible differential role for D1 and D2 receptors in mu-opioidergic immunomodulation.  相似文献   

14.
Effects of orphanin FQ (OFQ) on central dopaminergic (DA) neurons and serum prolactin (PRL) were examined in ovariectomized, estrogen-primed Sprague-Dawley rats. The activities of central DA neurons, including the tuberoinfundibular (TI), nigrostriatal, mesolimbic, and incertohypothalamic ones, were determined by measuring the levels of 3,4-dihydroxyphenylacetic acid (DOPAC), the major metabolite of dopamine, in their projection regions in the brain by HPLC plus electrochemical detection. Intracerebroventricular administration of OFQ lowered DOPAC levels in the median eminence (ME), striatum, nucleus accumbens, and hypothalamic paraventricular nucleus in a dose (0.01-10 microg)- and time (30-90 min)-dependent manner. In contrast, OFQ increased DOPAC in the suprachiasmatic nucleus and had no effect in the periventricular nucleus. Serum PRL levels exhibited a typical inverse relationship with the activity of TIDA neurons, as determined by DOPAC levels in the ME. In the afternoon, we observed an endogenous decrease of ME DOPAC level accompanied by a PRL surge in estrogen-primed female rats. Although OFQ caused further decrease of ME DOPAC in the afternoon, it failed to augment the PRL surge level. Although pretreatment of an antisense oligodeoxynucleotide against the opioid receptor-like receptor gene had no effect on basal ME DOPAC levels in the morning or afternoon, it attenuated the afternoon PRL surge. Furthermore, it blocked the effects of exogenous OFQ on ME DOPAC and serum PRL levels, whereas the sense or missense oligodeoxynucleotide had no effect. These results indicate that OFQ and its receptors may be involved in the regulation of central DA neuronal activity and PRL secretion.  相似文献   

15.
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectomized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and DA actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of DA through D(2) receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of DA through D(1) receptors and in other part by inhibition of stimulatory action of DA through D(2) receptors.  相似文献   

16.
Reproductive experience (RE), i.e. pregnancy and lactation, induces physiological changes in mammals. Recent data show that neuroimmune interactions are modulated by a diversity of events involving neurotransmitters and neuropeptides. These molecules, particularly dopamine (DA), were reported to mediate the relevant cross talk between immune and neuroendocrine systems. Moreover, DA-mediated regulation of leukocyte function is a reasonable approach to investigate the DA-operated regulatory switch for immune-competent cells, such as macrophages. Therefore, the goals of the present study were to determine the effects of RE on: (1) dopaminergic function through hypothalamic levels of DA, dihydroxyphenylacetic acid (DOPAC), homovanilic acid (HVA), serotonin (5-HT), and 5-hydroxyindole acetic acid (5-HIAA); (2) basal levels of circulating prolactin (PRL); and (3) activity of peritoneal macrophage (phagocytosis and oxidative burst). A total of 16 adult (200-250 g) female Wistar rats were used, divided in two groups: nulliparous and primiparous. Approximately 2-3 weeks after weaning pups from the primiparous group, both groups of rats were tested. The findings indicate that: (1) DOPAC concentrations, DOPAC/DA and HVA+DOPAC/DA ratios decreased in primiparous rats as compared to virgin rats, (2) primiparous rats showed significantly lower serum PRL levels, and (3) phorbol miristate acetate (PMA)-induced oxidative burst was decreased in peritoneal macrophage from primiparous rats as compared to virgin rats. To test the possible positive correlation between serum levels of PRL and the intensity of oxidative burst by peritoneal macrophage, an extra experiment was done with adult virgin female rats treated with domperidone, an antagonist of DA receptors. Domperidone-treated animals showed increased serum levels of PRL and simultaneous increase in peritoneal macrophage oxidative burst. Thus, suggesting an indirect participation of hyperprolactinemia, induced by this treatment in peritoneal macrophage activity of female rats. These results suggest that a previous RE can modulate the activity of dopaminergic hypothalamic systems, while decreasing PRL serum levels and the oxidative burst of peritoneal macrophage. The neurochemical and hormonal RE-induced changes correlate with the immune alterations.  相似文献   

17.
Buspirone produces a dose-dependent but short-lived elevation in striatal dopamine (DA) metabolites in the rat. Invitro, buspirone possesses an affinity similar to sulpiride for DA receptors (3H-spiperone). A moderate affinity for α1 receptors was also observed while buspirone was inactive at α2, β, muscarinic and serotonin2 receptors. This pharmacological profile as well as previous behavioral data indicate that buspirone may be a potential “atypical” neuroleptic.  相似文献   

18.
IntroductionDopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release.MethodsDAR were analyzed by RT-PCR and Western blotting in explants, primary adipocytes and two human adipocyte cell lines, LS14 and SW872. ARSA expression and activity were determined by qPCR and enzymatic assay. PRL expression and release were determined by luciferase reporter and Nb2 bioassay. Analysis of cAMP, cGMP, leptin, adiponectin and interleukin 6 (IL-6) was done by ELISA. Activation of MAPK and PI3 kinase/Akt was determined by Western blotting.ResultsDAR are variably expressed at the mRNA and protein levels in adipose tissue and adipocytes during adipogenesis. ARSA activity in adipocyte increases after differentiation. DA at nM concentrations suppresses cAMP, stimulates cGMP, and activates MAPK in adipocytes. Acting via D2R-like receptors, DA and DA-S inhibit PRL gene expression and release. Acting via D1R/D5R receptors, DA suppresses leptin and stimulates adiponectin and IL-6 release.ConclusionsThis is the first report that human adipocytes express functional DAR and ARSA, suggesting a regulatory role for peripheral DA in adipose functions. We speculate that the propensity of some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due, in part, to their direct action on adipose tissue.  相似文献   

19.
The aim of this study was to investigate hormonal factors responsible for the huge increase in PRL receptors on the day of estrus in the rat mammary gland. For this purpose, ovariectomized rats were primed with E2 so as to reach a physiological serum concentration of E2 (21.5 +/- 1.2 pg/ml) and high PRL serum values (72.8 +/- 21.9 ng/ml). In these conditions, PRL specific binding and capacity were respectively 22.8 +/- 8.3%/mg protein and 96 +/- 29 fm/mg protein. An injection of either LHRH (500 ng/rat) or LH (60 micrograms LH-RP1/rat) was capable of increasing significantly both PRL specific binding and capacity. Capacity reached the values of 498 +/- 103 and 507 +/- 240 fm/mg protein for LHRH and LH respectively. LHRH action appeared to be mainly mediated through LH secretion, since no difference was found between LHRH and LH. LHRH and LH injections alone were unable to modify PRL binding, suggesting that they only potentiate E2 and PRL action. These results show for the first time that LH is involved in the regulation of PRL receptors in the rat mammary gland.  相似文献   

20.
The time course effects of pargyline on hypothalamic biogenic amines and serum prolactin (PRL), LH and TSH were studied in adult male rats. The rats were killed at intervals of 1–6 hrs after pargyline injection. Hypothalamic dopamine (DA) rose 79% by 1 hr and was 41% above “0” time by 6 hrs. Norepinephrine (NE) increased 31% by 1 hr and remained at about this level through 6 hrs, whereas serotonin (5HT) increased from 42% by 1 hr and to 95% by 6 hrs. Serum PRL LH and TSH fell significantly during the first 2 hrs, but all had returned to pretreatment values by 4 hrs. Serum PRL was about 4-fold above pretreatment values by 6 hrs, but LH and TSH remained at pretreatment levels. Stimulation by pargyline of PRL release was potentiated by Lilly compound 110140, a serotonin reuptake inhibitor, and blocked by parachlorophenylalanine, a serotonin synthesis inhibitor. These results suggest that the inhibitory effects of pargyline on PRL, LH, and TSH release during the first 2 hrs were associated mainly with a rapid increase in DA, and subsequent elevation of PRL release was related to the increase in 5HT. Return of serum LH and TSH to pretreatment levels at 4 and 6 hrs appeared to be associated mainly with the decrease in DA and perhaps to elevated NE levels. These results suggest that changes in relative concentrations of hypothalamic amines are related to differential release of PRL, LH and TSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号