首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mohanty S  Dafale N  Rao NN 《Biodegradation》2006,17(5):403-413
A two-stage anaerobic–aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l−1. The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l−1 and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV–VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic–aerobic treatment after a reaction period of 2 days.  相似文献   

2.
The effect of cyclic anaerobic–aerobic conditions on the biodegradative capability of the mixed microbial culture for the azo dye Remazol Brilliant Violet 5R (RBV-5R) was investigated in the sequencing batch reactor (SBR) fed with a synthetic textile wastewater. The SBR had a 12-h cycle time with anaerobic–aerobic periods of 3/9, 6/6 and 9/3 h. General SBR performance was assessed by measurement of catabolic enzymes (catechol 2,3-dioxygenase, azo reductase), chemical oxygen demand (COD), color and amount of aromatic amines. In this study, under steady-state conditions, the anaerobic period of the cyclic SBR was found to allow the reductive decolorization of azo dye. Longer anaerobic periods resulted in higher color removal efficiencies, approximately 71% for the 3-h, 87% for 6-h and 92% for the 9-h duration. Total COD removal efficiencies were over 84% under each of the cyclic conditions and increased as the length of the anaerobic period was increased; however, the highest color removal rate was attained for the cycle with the shortest anaerobic period of 3 h. During the decolorization of RBV-5R, two sulfonated aromatic amines (benzene based and naphthalene based) were formed. Additionally, anaerobic azo reductase enzyme was found to be positively affected with the increasing duration of the anaerobic period; however; it was vice versa for the aerobic catechol 2,3-dioxygenase (C23DO) enzyme.  相似文献   

3.
A sequential anaerobic–aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus—GC subgroup B.  相似文献   

4.
ACEA is a modern Italian multi-utility company, which currently provides services for Municipalities, private companies and citizens. The Waste Treatment facilities of ACEA Pinerolese Industriale S.p.A. have been developed during years 2001?C2003. The entire process is based on the connection of four different treatment plants (anaerobic digestion, composting plant, wastewater treatment plant and a landfill), where both anaerobic and aerobic digestion take place. The efficiency of the system is aligned to literature data for best efficiency as we can see from the 0,534?m3/KgVSfed of the specific biogas production and from the substrate removal effectiveness reaching 69?% in 4?years time data. Moreover, the amount of energy consumed by the anaerobic digestion (AD) treatment is less than the 27?% of the energy produced by the AD system, which is a remarkable gain in efficiency.  相似文献   

5.
The study investigated methane production from dehydrated waste-activated sludge (DWAS) with approximately 80% water content under thermophilic conditions. The repeated batch-wise treatment of DWAS using methanogenic sludge unacclimated to high concentrations of ammonia, increased the ammonia production up to 7,600 mg N per kilogram total wet sludge of total ammonia concentration, and stopped the methane production. Investigation revealed that the loading ratio of DWAS for methanogenic sludge influences anaerobic digestion. Methane production significantly decreased and ammonia concentration increased with the increase in loading ratio of DWAS. Since the semicontinuous culture revealed that approximately 50% of organic nitrogen in DWAS converted to ammonia at sludge retention time (SRT) after 4 days at 37 degrees C and 1.33 days at 55 degrees C, the previous stripping of the ammonia produced from DWAS was carried out. The stripping of ammonia increased methane production significantly. This ammonia-methane two-stage anaerobic digestion demonstrated a successful methane production at SRT 20 days in the semicontinuous operation using a laboratory-scale reactor system.  相似文献   

6.
A continuous-flow anaerobic–anoxic (A2) activated sludge system was operated for efficient enhanced biological phosphorus removal (EBPR). Because of the system configuration with no aeration zones, phosphorus (P) uptake takes place solely under anoxic conditions with simultaneous denitrification. Basic operating conditions, namely biomass concentration, influent carbon to phosphorus ratio and anaerobic retention time were chosen as variables in order to assess their impact on the system performance. The experimental results indicated that maintenance of biomass concentration above 2,500 mg MLVSS/L resulted in the complete phosphate removal from the influent (i.e. 15 mg PO4 3−-P/L) for a mean hydraulic residence time (HRT) of 15 h. Additionally, by increasing the influent COD/P ratio from 10 to 20 g/g, the system P removal efficiency was improved although the experimental results indicated a possible enhancement of the competition between phosphorus accumulating organisms (PAOs) and other microbial populations without phosphorus uptake ability. Moreover, because of the use of acetate (i.e. easily biodegradable substrate) as the sole carbon source in the system feed, application of anaerobic retention times greater than 2 h resulted in no significant release of additional P in the anaerobic zone and no further amelioration of the system P removal efficiency. The application of anoxic P removal resulted in more than 50% reduction of the organic carbon necessitated for nitrogen and phosphorus removal when compared to a conventional EBPR system incorporating aerobic phosphorus removal.  相似文献   

7.
As computational capabilities increase, molecular dynamics (MD) simulations become important tools of simulating reality. These simulations are especially useful for compressible gas mixture problems. In this study, binary diffusion of helium and argon was examined using a hard-sphere MD simulation method. For the sake of computational speed, low spacing ratios were chosen. Binary mass diffusion of gases in two equally sized halves of a box was simulated for identical initial kinetic energies and number densities. It has been noted that a purely mass diffusion mechanism of different gases is not physically possible. The resultant gas mixtures of several diffusion simulations were used as initial conditions for combined heat transfer – Couette flow, and heating and cooling experiments. The results showed the interesting behaviour of the mixture, which was subjected to various wall conditions. Energy of heavier molecules is found to be more sensitive to the wall velocities and less sensitive to the wall temperatures than lighter molecules. Diffusion, heat transfer, viscosity and heat capacity coefficients are deduced as well.  相似文献   

8.
9.
Biodegradation of azo dyes in a sequential anaerobic–aerobic system   总被引:4,自引:0,他引:4  
A sequential anaerobic–aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent-contaminated soil was used to degrade sulfonated azo dyes Orange G (OG), Amido black 10B (AB), Direct red 4BS (DR) and Congo red (CR). Under anaerobic conditions in a fixed-bed column using glucose as co-substrate, the azo dyes were reduced and amines were released by the bacterial biomass. The amines were completely mineralized in a subsequent aerobic treatment using the same isolates. The maximum degradation rate observed in the treatment system for OG was 60.9 mg/l per day (16.99 mg/g glucose utilized), for AB 571.3 mg/l per day (14.46 mg/g glucose utilized), for DR 112.5 mg/l per day (32.02 mg/g glucose utilized) and for CR 134.9 mg/l per day (38.9 mg/g glucose utilized). Received: 6 August 1999 / Received revision: 20 December 1999 / Accepted: 24 December 1999  相似文献   

10.
11.
By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde–alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux-control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and ?0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux-control on the carbon end-product formation of amoebas subjected to aerobic conditions.  相似文献   

12.
XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remains unknown though recent evidence suggest that these structures could be important for its roles in both NER and non-NER activities. Previously, we reported that XPA recognizes undamaged DNA ds/ssDNA (double-strand/single-strandDNA) junctions with a binding affinity much higher than its ability to bind bulky DNA damage. To understand how this interaction occurs biochemically we implemented a structural determination of the interaction using a MS-based protein footprinting method and limited proteolysis. By monitoring surface accessibility of XPA lysines to NHS-biotin modification in the free protein and the DNA junction-bound complex we show that XPA physically interacts with the DNA junctions via two lysines, K168 and K179, located in the previously known XPA(98–219) DBD (DNA-binding domain). Importantly, we also uncovered new lysine residues, outside of the known DBD, involved in the binding. We found that residues K221, K222, K224 and K236 in the C-terminal domain are involved in DNA binding. Limited proteolysis analysis of XPA–DNA interactions further confirmed this observation. Structural modelling with these data suggests a clamp-like DBD for the XPA binding to ds/ssDNA junctions. Our results provide a novel structure-function view of XPA–DNA junction interactions.  相似文献   

13.
14.
Combination of anaerobic–aerobic sequencing processes result in both anaerobic color removal and aerobic aromatic amine removal during the treatment of dye-containing wastewaters. The aim of the present study was to gain more insight into the competitive biochemical reactions between sulfate and azo dye in the presence of glucose as electron donor source. For this aim, anaerobic–aerobic sequencing batch reactor fed with a simulated textile effluent including Remazol Brilliant Violet 5R (RBV 5R) azo dye was operated with a total cycle time of 12 h including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (sulfate). Performance of the anaerobic phase was determined by monitoring color removal efficiency, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), color, specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2-dioxygenase), and formation of aromatic amines. The presence of sulfate was not found to significantly affect dye decolorization. Sulfate and azo dye reductions took place simultaneously in all operational conditions and increase in the sulfate concentration generally stimulated the reduction of RBV 5R. However, sulfate accumulation under anaerobic conditions was observed proportional to increasing sulfate concentration.  相似文献   

15.
16.
O'Grady SP  Dearing MD 《Oecologia》2006,150(3):355-361
Nitrogen isotopes have been widely used to investigate trophic levels in ecological systems. Isotopic enrichment of 2–5‰ occurs with trophic level increases in food webs. Host–parasite relationships deviate from traditional food webs in that parasites are minimally enriched relative to their hosts. Although this host–parasite enrichment pattern has been shown in multiple systems, few studies have used isotopic relationships to examine other potential symbioses. We examined the relationship between two gut-nematodes and their lizard hosts. One species, Physaloptera retusa, is a documented parasite in the stomach, whereas the relationship of the other species, Parapharyngodon riojensis (pinworms), to the host is putatively commensalistic or mutualistic. Based on the established trophic enrichments, we predicted that, relative to host tissue, parasitic nematodes would be minimally enriched (0–1‰), whereas pinworms, either as commensals or mutualists, would be significantly enriched by 2–5‰. We measured the 15N values of food, digesta, gut tissue, and nematodes of eight lizard species in the family Liolaemidae. Parasitic worms were enriched 1±0.2‰ relative to host tissue, while the average enrichment value for pinworms relative to gut tissue was 6.7±0.2‰. The results support previous findings that isotopic fractionation in a host–parasite system is lower than traditional food webs. Additionally, the larger enrichment of pinworms relative to known parasites suggests that they are not parasitic and may be several trophic levels beyond the host.  相似文献   

17.
Absract EPAS1 is a gene involved in complex oxygen sensing. It is expressed in microvascular endothelial cells, lung epithelial cells, cardiac myocytes and the brain. An association study was undertaken comparing elite endurance athletes classified into two groups according to a power–time model of performance intensity: power–time-maximum (PT-MAX; N=242, event duration 50 s to 10 min) and power–time–steady state (PT-SS; N=151, event duration ~2–10 h), with normal controls (N=444) using 12 SNPs across EPAS1. Ordinal regression analysis of allele frequencies revealed significant differences at SNPs 2 and 3 (P=0.01). Haplotype analysis revealed the presence of haplotypes involving SNPs 2–5 that significantly differentiated (P<0.05) the groups based on an ordinal ranking using the power–time classification. These same haplotypes differentiated the PT-MAX group in which a significant decrease in a haplotype (F: G-C-C-G; OR=0.57, P=0.02, 95% CI 0.36–0.92) and increase in a second haplotype (G: A-T-G-G; OR=1.75, P=0.03, 95% CI 1.05–2.91) was observed compared to controls. The PT-SS group was differentiated from the PT-MAX group by a third haplotype (H: A-T-G-A; OR=0.46, P=0.04, 95% CI 0.22–0.96). Since EPAS1 has a role as a sensor capable of integrating cardiovascular function, energetic demand, muscle activity and oxygen availability into physiological adaptation, we propose that DNA variants in EPAS1 influence the relative contribution of aerobic and anaerobic metabolism and hence the maximum sustainable metabolic power for a given event duration.  相似文献   

18.
Synthetically prepared wastewater originating from the H-acid (4-Amino-5-hydroxy-2,7-naphthalene disulfonic acid) manufacturing process was subjected to respirometric analysis for evaluating the level of achievable biodegradation in the presence of this commercially important azo dye precursor. For this purpose, H-acid was mixed with synthetic substrate having the same characteristics as sewage at a concentration and composition being typical for H-acid manufacturing wastewater. Experimental results indicated that H-acid was not biodegradable under activated sludge treatment conditions even after prolonged acclimation periods. The results were also confirmed by model evaluation of oxygen uptake rate profiles. H-acid also did not inhibit the biodegradation of synthetic sewage but accumulated as soluble inert COD in the treated wastewater.  相似文献   

19.
Although some yeast species, e.g. Saccharomyces cerevisiae, can grow under anaerobic conditions, Kluyveromyces lactis cannot. In a systematic study, we have determined which S. cerevisiae genes are required for growth without oxygen. This has been done by using the yeast deletion library. Both aerobically essential and nonessential genes have been tested for their necessity for anaerobic growth. Upon comparison of the K. lactis genome with the genes found to be anaerobically important in S. cerevisiae, which yielded 20 genes that are missing in K. lactis, we hypothesize that lack of import of sterols might be one of the more important reasons that K. lactis cannot grow in the absence of oxygen.  相似文献   

20.
Protein–protein interactions between the microbiome and host organism play an important role in shaping host health. These host-modulating proteins have therapeutic potential in treating microbiome-linked disorders such as inflammatory bowel disease and obesity. Structural analysis of interacting proteins provides highly mechanistic insight into the domains driving these interactions and the resulting influence on host cell processes. Here, we briefly review recent publication of microbiome protein structures involved in host binding interactions, the effects of these interactions on host physiology, and the need for further study to increase the ability to detect proteins with therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号