首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three stem cell populations in hydra, the epithelial cells of the ectoderm and endoderm, which make up the body of the hydra, and the interstitial cells, which give rise to nerve cells, nematocytes, and gametes, were tested for their effects on determining the sexual phenotype of individuals. This was done by creating epithelial hydra, which are devoid of interstitial cells and their derivatives, of one sexual type and repopulating them with interstitial cells from individuals of the other sexual type. The resulting heterosexual chimeras were found in all cases to display the same sexual phenotype as that of the interstitial cell donor, indicating this cell type is responsible for the sex of the animal. The epithelial tissue had no influence in determining which gamete type was produced.  相似文献   

2.
As a member of the phylum Cnidaria, the body wall of hydra is organized as an epithelium bilayer (ectoderm and endoderm) with an intervening extracellular matrix (ECM). Previous studies have established the general molecular structure of hydra ECM and indicate that it is organized as two subepithelial zones that contain basement membrane components such as laminin and a central fibrous zone that contains interstitial matrix components such as a unique type I fibrillar collagen. Because of its simple structure and high regenerative capacity, hydra has been used as a developmental model to study cell-ECM interaction during epithelial morphogenesis. The current study extends previous studies by focusing on the relationship of ECM biogenesis to epithelial morphogenesis in hydra, as monitored during head regeneration or after simple incision of the epithelium. Histological studies indicated that decapitation or incision of the body column resulted in an immediate retraction of the ECM at the wound site followed by a re-fusion of the bilayer within 1 hour. After changes in the morphology of epithelial cells at the regenerating pole, initiation of de novo biogenesis of an ECM began within hours while full reformation of the mature matrix required approximately 2 days. These processes were monitored using probes to three matrix or matrix-associated components: basement membrane-associated hydra laminin beta1 chain (HLM-beta1), interstitial matrix-associated hydra fibrillar collagen (Hcol-I) and hydra matrix metalloproteinase (HMMP). While upregulation of mRNA for both HLM-beta1 and Hcol-I occurred by 3 hours, expression of the former was restricted to the endoderm and expression of the latter was restricted to the ectoderm. Upregulation of HMMP mRNA was also associated with the endoderm and its expression paralleled that for HLM-beta1. As monitored by immunofluorescence, HLM-beta1 protein first appeared in each of the two subepithelial zones (basal lamina) at about 7 hours, while Hcol-I protein was first observed in the central fibrous zone (interstitial matrix) between 15 and 24 hours. The same temporal and spatial expression pattern for these matrix and matrix-associated components was observed during incision of the body column, thus indicating that these processes are a common feature of the epithelium in hydra. The correlation of loss of the ECM, cell shape changes and subsequent de novo biogenesis of matrix and matrix-associated components were all functionally coupled by antisense experiments in which translation of HLM-beta1 and HMMP was blocked and head regeneration was reversibly inhibited. In addition, inhibition of translation of HLM-beta1 caused an inhibition in the appearance of Hcol-I into the ECM, thus suggesting that binding of HLM-beta1 to the basal plasma membrane of ectodermal cells signaled the subsequent discharge of Hcol-I from this cell layer into the newly forming matrix. Given the early divergence of hydra, these studies point to the fundamental importance of cell-ECM interactions during epithelial morphogenesis.  相似文献   

3.
The interstitial cells of Pennaria tiarella differentiate exclusively from the central endoderm of the planula. Shortly after their appearance, most of the interstitial cells become cnidoblasts. Subsequently, as the larva transforms into a polyp, both cnidoblasts and interstitial cells migrate from the endoderm, through endoblast and mesoglea, into the ectoderm. It is suggested that some interstitial cells remain in the endoderm and differentiate into the gland and mucous cells of the polyp gastroderm.  相似文献   

4.
Campbell RD 《Tissue & cell》1990,22(2):137-147
The histological pathway by which intracellular symbiotic Chlorella move into the developing oocytes of hydra was investigated at the ultrastructural level. Algae move from within the digestive cells of the endoderm to within the oocytes of the ectoderm in a three-step process. First, the algae are released by digestive cells into the mesolamella (basement membrane). Second, the algae move as individual cells into the adjacent intercellular spaces of the ectoderm. Third, they are taken up by the oocyte by phagocytosis. This transfer occurs only in the central regions of the ovary, and only after oocytes have reached an advanced stage. Normally the mesolamella is separated from the ectodermal interstitial spaces by a layer of epitheliomuscular cell muscle processes. This layer degenerates in the region where algae will move into the ectoderm. This study shows that algae move as individual cells and not intracellularly within processes of the epithelial cells.  相似文献   

5.
6.
Due to the tissue dynamics of hydra, every neuron is constantly changing its location within the animal. At the same time specific subsets of neurons defined by morphological or immunological criteria maintain their particular spatial distributions, suggesting that neurons switch their phenotype as they change their location. A position-dependent switch in neuropeptide expression has been demonstrated. The possibility that ganglion cells of the body column are converted into epidermal sensory cells of the head was examined using a monoclonal antibody, TS33, whose binding is restricted to a subset of epidermal sensory cells of the hypostome, the apical end of the head. When animals devoid of interstitial cells, which are the nerve cell precursors, were decapitated and allowed to regenerate, they formed TS33+ epidermal sensory cells. As this latter cell type is not found in the body column, and the interstitial cell-free animals contained only epithelial cells and ganglion cells in the part of the ectoderm that formed the head during regeneration, the TS33+ epidermal sensory cells most likely arose from the TS33- ganglion cells. The observation of epidermal sensory cells labeled with both TS33 and TS26, a monoclonal antibody that binds to ganglion cells, in regenerating and normal heads provides further support. The double-labeled cells are probably in transition from a ganglion cell to an epidermal sensory cell. These results provide a second example of position-dependent changes in neuron phenotype, and suggest that the differentiated state of a neuron in hydra is only metastable with regard to phenotype.  相似文献   

7.
At the cellular level the head activator from hydra acts as a mitogen or growth hormone. It shortens cell cycle times by stimulating cells arrested in the G2 period to go through mitosis. This is true for continuously proliferating cell types like epithelial cells, gland cells, and interstitial cells, and for differentiating interstitial cells including those undergoing a last mitosis before differentiating into nerves or nematocytes.  相似文献   

8.
Nerve cells in hydra differentiate from the interstitial cell, a multipotent stem cell. Decapitation elicits a sharp increase in the fraction of the interstitial cells committed to nerve cell differentiation in the tissue which forms the new head. To investigate when during the cell cycle nerve cell commitment can be stimulated, hydra were pulse-labeled with [3H]thymidine at times from 18 hr before to 15 hr following decapitation; the resulting cohorts of labeled interstitial cells were in the various phases of the cell cycle at the time of decapitation. Increased commitment to nerve cell differentiation within a single cell cycle (≈24 hr) was observed in those cohorts which were at least 6 hr before the end of S-phase (12 hr) at the time of decapitation. The lag time required for decapitation to produce an effective stimulus for nerve cell differentiation was measured by transplanting the stem cells from the regenerating tissue to a neutral environment. Following decapitation, 3 to 6 hr were required for increased nerve cell commitment to be stable to such transplantation. These results suggest that interstitial cells must be stimulated by late S-phase to become committed to undergo nerve cell differentiation following the subsequent mitosis. However, when head regeneration was reversed by grafting a new head onto the regenerating surface, nerve cell differentiation by such committed stem cells was greatly reduced. This indicates that an appropriate tissue environment is required for committed interstitial cells to complete the nerve cell differentiation pathway.  相似文献   

9.
We investigated morphology, dynamics and origin of cells surrounding the mouth of Hydra vulgaris using the monoclonal antibody L96. This antibody recognises a one cell-thick ring of endodermal epithelial cells exactly at the boundary between endoderm (gastrodermis) and ectoderm (epidermis). L96+ cells can stretch considerably without any cell rupture during mouth opening. Thus, our data prove the existence of a distinct cell population defining hydra's mouth. A model for mouth opening is proposed and the significance of L96+ cells for boundary formation between ectoderm and endoderm is discussed.  相似文献   

10.
During embryogenesis the central and peripheral nervous systems arise from a neural precursor population, neurectoderm, formed during gastrulation. We demonstrate the differentiation of mouse embryonic stem cells to neurectoderm in culture, in a manner which recapitulates embryogenesis, with the sequential and homogeneous formation of primitive ectoderm, neural plate and neural tube. Formation of neurectoderm occurs in the absence of extraembryonic endoderm or mesoderm and results in a stratified epithelium of cells with morphology, gene expression and differentiation potential consistent with positionally unspecified neural tube. Differentiation of this population to homogeneous populations of neural crest or glia was also achieved. Neurectoderm formation in culture allows elucidation of signals involved in neural specification and generation of implantable cell populations for therapeutic use.  相似文献   

11.
A procedure has been developed for cloning interstitial stem cells from hydra. Clones are prepared by introducing small numbers of viable cells into aggregates of nitrogen mustard-inactivated host tissue. Clones derived from added stem cells are identified after 1–2 weeks of growth by staining with toluidine blue. The incidence of clones increases with increasing input of viable cells according to one-hit Poisson statistics, indicating that clones arise from single cells. After correction for cell losses in the procedure, about 1.2% of the input cells are found to form clones. This compares with estimates from in vivo experiments of about 4% stem cells in whole hydra [David, C. N., and Gierer, A. (1974). Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J. Cell Sci.16, 359–375.]Differentiation of nematocytes and nerve cells in clones was analyzed by labeling precursors with [3H]thymidine and scoring labeled nerves and nematocytes 2 days later. Nine clones examined in this way contained both differentiated nerve cells and nematocytes, demonstrating that the interstitial stem cell is multipotent. This result suggests that the observed localization of nerve and nematocyte differentiation in whole hydra probably occurs at the level of stemcell determination. The observation that differentiated cells occur very early in clone development suggests that a stem cell's decision to proliferate or differentiate is regulated by shortrange feedback signals which are already saturated in young clones.  相似文献   

12.
Action of foot activator on growth and differentiation of cells in hydra   总被引:2,自引:0,他引:2  
Foot activator is a small peptide found in hydra and specifically activates foot formation. I present a method for the further purification of foot activator by high-pressure liquid chromatography. The morphogenetically active fractions were assayed for their effect at the cellular level. Foot activator acts as a mitogen by pushing epithelial and interstitial cells, which are arrested in G2, into mitosis. In the presence of foot activator, epithelial stem cells are stimulated to differentiate into foot mucus cells, and interstitial nerve precursor cells differentiate into mature nerve cells. The interaction of foot activator with head activator in the development of hydra is discussed.  相似文献   

13.
We have previously reported immunocytochemical, biochemical, behavioral, and electrophysiological evidence for glutamatergic transmission through (±)--amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)/kainate receptors in hydra. We now report specific localization of the N-Methyl-D-aspartic acid receptor subunit 1 (NMDAR1) in epithelial, nerve, nematocytes, and interstitial cells of hydra. Macerates of tentacle/hypostome pieces of Hydra vulgaris were prepared on agar-coated slides, fixed with buffered formaldehyde/glutaraldehyde, and fluorescently labeled with monoclonal antibodies against mammalian NMDAR1. Negative controls omitted primary antibody. Digital images were recorded and analyzed. Specific localized and intense labeling was found in ectodermal battery cells, other epithelial cells, nematocytes, interstitial cells, and sensory and ganglionic nerve cells, and in battery cells was associated with enclosed nematocytes and neurons. The labeling of myonemes was more diffuse and less intense. In nerve and sensory cells, punctate labeling was prominent on cell bodies. These results are consistent with our earlier evidence for glutamatergic neurotransmission and kainate/NMDA regulation of stenotele discharge. They support other behavioral and biochemical evidence for a D-serine-sensitive, strychnine-insensitive, glycine receptor in hydra and suggest that the glutamatergic AMPA/kainate-NMDA system is an early evolved, phylogenetically old, behavioral control mechanism.  相似文献   

14.
Summary— Scanning electron microscopy revealed that exposure of hydra polyps to DMSO at concentrations used for permeabilizing tissue results in striking changes in epithelial cell morphology. Epithelial cells from treated polyps rounded up in shape and formed numerous large blebs at the cell surface. Along the borders of epithelial cells numerous small projections became detectable. The DMSO-induced changes at the cell surface corresponded to drastic changes in the intracellular organization. No evidence could be found for DMSO induced opening of cell junctions and/or opening of the interstitial space. The results demonstrate that DMSO affects the morphology and intracellular organization of hydra epithelial cells. Thus, caution is necessary in interpreting cell behavior in DMSO treated tissue.  相似文献   

15.
The precursors for several differentiated cell types in hydra, such as nerve cells and nematocytes, arise from the interstitial cell population. Previously, it has been suggested that the interstitial cells represent a homogeneous stem cell population, and that both the rate of growth and the amount of differentiation are regulated strictly at the level of stem cell self-renewal and commitment. However, recent evidence does not support this viewpoint. In this paper we have proposed that the interstitial cell population is complex, containing both clonable stem cells and other cells which have a reduced division capacity. In response to hydroxyurea treatment, there is an amplification in the number of divisions that the non-stem interstitial cells undergo before differentiating. This amplification model is consistent with the correlations found in the preceding report (S. Heimfeld and H.R. Bode, 1986, Dev. Biol. 115, 51-58) and fits well with previously published data. An additional experiment which tests two specific predictions of this new model is presented.  相似文献   

16.
The relationship between populations of nerve cells defined by two monoclonal antibodies was investigated in Hydra oligactis. A population of sensory nerve cells localized in the head (hypostome and tentacles) is identified by the binding of antibody JD1. A second antibody, RC9, binds ganglion cells throughout the animal. When the nerve cell precursors, the interstitial cells, are depleted by treatment with hydroxyurea or nitrogen mustard, the JD1+ nerve cells are lost as epithelial tissue is sloughed at the extremities. In contrast, RC9+ nerve cells remain present in all regions of the animal following treatment with either drug. When such hydra are decapitated to initiate head regeneration, the new head tissue formed is again free of JD1+ sensory cells but does contain RC9+ ganglion cells. Our studies indicate that (1) nerve cells are passively displaced with the epithelial tissue in hydra, (2) JD1+ sensory cells do not arise by the conversion of body column nerve cells that are displaced into the head, whereas RC9+ head nerve cells can originate in the body column, (3) formation of new JD1+ sensory cells requires interstitial cell differentiation. We conclude from these results that the two populations defined by these antibodies are incorporated into the h ad via different developmental pathways and, therefore, constitute distinct nerve cell lineages.  相似文献   

17.
In an attempt to isolate unipotent stem cells (progenitors to the nerve cells, nematocytes, gland cells, and gametes) from Hydra oligactis females, animals were treated with a drug (hydroxyurea, HU) that preferentially lowers or eliminates the interstitial stem cells, leaving the epithelial tissue intact. In this epithelial environment, interstitial cells remaining after treatment will proliferate and differentiate, permitting a long-term analysis of their developmental capabilities. Following treatment of females with HU, animals were isolated that contained interstitial cells that gave rise to eggs only. Two clones of animals containing these cells were propagated for several years and the growth and differentiation behavior of the interstitial cells examined in their asexually produced offspring. During this time, the cells displayed an extensive proliferative capacity (classifying them as stem cells) and remained restricted to egg differentiation. It is proposed that both the sperm- and the egg-restricted stem cells arise from a multipotent stem cell, which also gives rise to the somatic cells (see above), and that, in hydra, sex is ultimately determined by interactions between cells of the two germ cell lineages.  相似文献   

18.
Stem cells appear to retain labeled DNA for extended periods because of their selective segregation of template DNA strands during mitosis. In this study, proliferating cells in the prepubertal bovine mammary gland were labeled using five daily injections of 5-bromo-2-deoxyuridine (BrdU). Five weeks later, BrdU-labeled mammary epithelial cells were still evident. The percentage of BrdU-labeled epithelial cells was greatest in the lower region of the mammary gland, near the gland cistern, and was decreased toward the periphery of the parenchymal region, where the ducts were invading the mammary fat pad. Increased numbers of BrdU-labeled epithelial cells in basal regions of the gland are likely a consequence of decreased proliferation rates and increased cell cycle arrest in this area. In peripheral regions of mammary parenchyma, the percentage of heavily labeled epithelial cells averaged 0.24%, a number that is consistent with estimates of the frequency of stem cells in the mouse mammary gland. Epithelial label-retaining cells seemingly represent a slowly proliferating population of cells, as 5.4% of heavily labeled cells were positive for the nuclear proliferation antigen Ki67. Because epithelial label-retaining cells contain estrogen receptor (ER)-negative and ER-positive cells, they apparently comprise a mixed population, which I suggest is composed of ER-negative stem cells and ER-positive progenitors. Continuing studies will address the usefulness of this technique to identify bovine mammary stem cells and to facilitate studies of stem cell biology.  相似文献   

19.
A quantitative method for maceration of hydra tissue   总被引:3,自引:0,他引:3  
Summary A method is described for the maceration (dissociation) of hydra tissue into single cells. The cells have characteristic morphology such that all basic types — epithelial, gland, mucous, interstitial, nematoblast, and nerve — can be distinguished. Criteria are given for identifying each cell type by phase contrast microscopy. It is shown that maceration quantitatively recovers cells from hydra tissue.  相似文献   

20.
During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural stem cells. Within developing pancreatic epithelium, nestin is co-expressed with pdx1 and p48, but not ngn3. Epithelial nestin expression is extinguished upon differentiation of endocrine and exocrine cell types, and no nestin-positive epithelial cells are observed by E15.5. In E10.5 dorsal bud explants, activation of EGF signaling results in maintenance of undifferentiated nestin-positive precursors at the expense of differentiated acinar cells, suggesting a precursor/progeny relationship between these cell types. This relationship was confirmed by rigorous lineage tracing studies using nestin regulatory elements to drive Cre-mediated labeling of nestin-positive precursor cells and their progeny. These experiments demonstrate that a nestin promoter/enhancer element containing the second intron of the mouse nestin locus is active in undifferentiated E10.5 pancreatic epithelial cells, and that these nestin-positive precursors contribute to the generation of differentiated acinar cells. As in neural tissue, nestin-positive cells act as epithelial progenitors during pancreatic development, and may be regulated by EGF receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号