首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
小鼠胚胎干细胞的培养   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎干细胞(embryonic stem cells,ES)的培养方法。方法:制备G418抗性的原代小鼠胚胎成纤维细胞,经丝裂霉素C处理后成滋养层细胞,将小鼠胚胎干细胞复苏后,应用含白血病抑制因子的ES细胞培养液,培养小鼠ES细胞,观察集落的生长情况,并在光镜下观察细胞形态。结果:小鼠胚胎成纤维细胞生长良好,ES细胞呈克隆状生长,且保持未分化状态。结论:建立了小鼠胚胎干细胞培养的有效方法,为下一步基因打靶奠定基础。  相似文献   

2.
Accumulation of mutations in embryonic stem (ES) cells would be detrimental to an embryo derived from these cells, and would adversely affect multiple organ systems and tissue types. ES cells have evolved multiple mechanisms to preserve genomic integrity that extend beyond those found in differentiated cell types. The present study queried whether mismatch repair (MMR) and base-excision repair (BER) may play a role in the maintenance of murine ES cell genomes. The MMR proteins Msh2 and Msh6 are highly elevated in mouse ES cells compared with mouse embryo fibroblasts (MEFs), as are Pms2 and Mlh1, albeit to a lesser extent. Cells transfected with an MMR reporter plasmid showed that MMR repair capacity is low in MEFs, but highly active in wildtype ES cells. As expected, an ES cell line defective in MMR was several-fold less effective in repair level than wildtype ES cells. Like proteins that participate in MMR, the level of proteins involved in BER was elevated in ES cells compared with MEFs. When BER activity was examined biochemically using a uracil-containing oligonucleotide template, repair activity was higher in ES cells compared with MEFs. The data are consistent with the suggestion that ES cells have multiple mechanisms, including highly active MMR and BER that preserve genetic integrity and minimize the accumulation of mutations.  相似文献   

3.
4.
5.
Goat embryonic stem (ES)-like cells could be isolated from primary materials-inner cell masses (ICMs) and remain undifferentiated for eight passages in a new culture system containing mouse ES cell conditioned medium (ESCCM) and on a feeder layer of mouse embryo fibroblasts (MEFs). However, when cultured in medium without mouse ESCCM, goat ES-like cells could not survive for more than three passages. In addition, no ES-like cells could be obtained when ICMs were cultured on goat embryo fibroblasts or the primary materials-whole goat blastocysts were cultured on MEFs. Goat ES-like cells isolated from ICMs had a normal karyotype and highly expressed alkaline phosphatase. Multiple differentiation potency of the ES-like cells was confirmed by differentiation into neural cells and fibroblast-like cells in vitro. These results suggest that mouse ES cells might secrete factors playing important roles in promoting goat ES-like cells' self-renewal, moreover, the feeder layers and primary materials could also influence the successful isolation of goat ES-like cells.  相似文献   

6.
This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.  相似文献   

7.
8.
The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.  相似文献   

9.
Mouse embryonic fibroblasts (MEFs) have been used as feeder cells to support the growth of mouse embryonic stem cell (mESC) and primordial germ cells (PGC) in culture for many years. However, MEF preparation is a complex and tedious task. Recently, there are reports indicating that the microenvironment provided by bone marrow stromal cells could support the survival of embryonic-like stem cells in bone marrow. In this report, rat bone marrow derived mesenchymal progenitor cells (MPC) were used as feeder cells to culture mouse Oct4-GFP ES cell and ES cell derived germ cells. FACS results show that similar to MEF, rat MPC could efficiently support growth of the mouse Oct4-GFP ES cell line in culture (MPC 85.5 ± 5.1% vs MEF 84.1 ± 6.2%). ES cells could be subcultured for >15 passages without losing morphological characteristics. The cultured cells expressed stem cell marker alkaline phosphatase, Oct4, Sox2, and SSEA-1. Furthermore, rat MPC cells were able to support survival of germ cells isolated from mouse Oct4-GFP ES cell formed embryoid bodies (EB). After induction by retinoic acid for 7 days, some isolated cells differentiated to spermatogonial stem-like cells, expressing Mvh, Stra-8, Hsp90-α, integrinβ1 and α6. Compared with traditional MEF culture systems, the rat MPC culture system is effective in supporting ES cell growth and is easy to prepare.  相似文献   

10.
 PTEN是一个重要的抑癌基因.为了调查PTEN在H2O2对细胞凋亡诱导过程中的作用及机制,采用Western 印迹方法,检测了在PTEN缺失细胞及对照细胞中H2O2对PI3K/AKT通路的影响;采用Annexin Ⅴ-FITC标记结合流式检测H2O2对PTEN缺失细胞及对照细胞凋亡的诱导.结果表明,在PTEN功能正常的对照细胞中,H2O2短时间活化,长时间抑制PI3K/AKT通路,但PTEN缺失后,H2O2对PI3K/AKT通路的介导被阻断;0.1mmol/L H2O2处理12 h及24 h可以诱导对照细胞的凋亡,但对PTEN缺失细胞没有明显影响.这一结果证明,PTEN通过参与H2O2对PI3K/AKT通路活性的调控影响H2O2介导的凋亡.  相似文献   

11.
12.
In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.  相似文献   

13.
Kim JM  Takemoto N  Arai K  Masai H 《The EMBO journal》2003,22(19):5260-5272
Cdc7 kinase is essential for initiation of DNA replication. Cdc7(-/-) mouse embryonic stem (ES) cells are non-viable but their growth can be rescued by an ectopically expressed transgene (Cdc7(-/-)tg). Here we report that, despite the normal growth capability of Cdc7(-/-)tg ES cells, the mice with the identical genetic background exhibit growth retardation. Concomi tantly, Cdc7(-/-)tg embryonic fibroblasts (MEFs) display delayed S phase entry and slow S phase progression. Furthermore, spermatogenesis of Cdc7(-/-)tg mice is disrupted prior to pachytene stage of meiotic prophase I. The impairment in spermatogenesis correlates with the extremely low level of Cdc7 protein in testes, and is rescued by introducing an additional allele of transgene, which results in increase of Cdc7 expression. The increased level of Cdc7 also recovers the growth of Cdc7(-/-)tg MEFs and mice, indicating that the developmental abnormalities of Cdc7(-/-)tg mice are due to insufficiency of Cdc7 protein. Our results indicate the requirement of a critical level of a cell-cycle regulator for mouse development and provide genetic evidence that Cdc7 plays essential roles in meiotic processes in mammals.  相似文献   

14.
15.
The demonstration that mouse somatic cells can be reprogrammed following fusion with embryonic stem (ES) cells may provide an alternative to somatic cell nuclear transfer (therapeutic cloning) to generate autologous stem cells. In an attempt to produce cells with an increased pool of reprogramming factors, tetraploid ES cells were produced by polyethylene glycol mediated fusion of two ES cell lines transfected with plasmids carrying puromycin or neomycin resistance cassettes, respectively, followed by double antibiotic selection. Tetraploid ES cells retain properties characteristic of diploid ES cells, including the expression of pluripotent gene markers Oct4 and Rex1. On injection into the testis capsule of severe combined immunodeficient (SCID) mice, tetraploid ES cells are able to form teratomas containing cells representative of all three germ layers. Further, these cells demonstrated the ability to integrate into the inner cell mass of blastocysts. This study indicates that tetraploid ES cells are promising candidates as cytoplasm donors for reprogramming studies.  相似文献   

16.
17.
Recombinase-mediated cassette exchange (RMCE), when applied to mouse embryonic stem (ES) cells, promises to increase the ease with which genetic alterations can be introduced into targeted genomic loci in the mouse. However, existing selection strategies for identifying ES cells in which replacement DNA cassettes from a carrier plasmid have been exchanged correctly into a defined locus are suboptimal. Here, we report the generation in mouse ES cells of a loxed cassette acceptor (LCA) allele within the glucokinase (gk) gene locus. Using the gkLCA as a test allele, we developed a staggered positive-negative selection strategy that facilitates efficient identification of ES cell clones in which a DNA replacement cassette from a carrier plasmid has been exchanged correctly into the gkLCA allele. This selection strategy, by facilitating more efficient production of ES cell clones with various replacement DNA cassettes, should accelerate targeted repetitive introduction of gene modifications into the mouse.  相似文献   

18.
19.
C57BL/6 mouse is the most standard strain in mouse genetics. The strain does, however, have several disadvantages; one being the difficulty in establishing embryonic stem (ES) cells. No reliable C57BL/6 ES cell line is widely available for creating mutant mice through gene targeting. It also greatly favors mouse genetics if one can routinely make multiple mutations by stably culturing germline‐competent C57BL/6 ES cells or if one can routinely establish ES cells from C57BL/6‐derived mutant mice to make multiple mutations. Recently, an ES culture method with three inhibitors (3i: SU5402 for FGFR, PD184352 for ERK, and CHIR99021 for GSK3) has been reported. Here we show that this 3i method is extremely instrumental in establishing and culturing germline‐competent ES cells in the C57BL/6N strain. genesis 48:317–327, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
In this study the role of nucleotide excision repair (NER) in protecting mouse embryonic stem (ES) cells against the genotoxic effects of UV-photolesions was analysed. Repair of cyclobutane pyrimidine dimers (CPD) in transcribed genes could not be detected whereas the removal of (6-4) photoproducts (6-4PP) was incomplete, already reaching its maximum (30%) 4 h after irradiation. Measurements of repair replication revealed a saturation of NER activity at UV doses >5 J/m2 while at a lower dose (2.5 J/m2) the repair kinetics were similar to those in murine embryonic fibroblasts (MEFs). Cytotoxic and mutagenic effects of photolesions were determined in ES cells differing in NER activity. ERCC1-deficient ES cells were hypermutable (10-fold) compared to wild-type cells, indicating that at physiologically relevant doses ES cells efficiently remove photolesions. The effect of the NER deficiency on cytoxicity was only 2-fold. Exposure to high UV doses (10 J/m2) resulted in a rapid and massive induction of apoptosis. Possibly, to avoid the accumulation of mutated cells, ES cells rely on the induction of a strong apoptotic response with a simultaneous shutting down of NER activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号