首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of adenine and guanine, relating to the biosynthesis of caffeine, in excised shoot tips of tea was studied with micromolar amounts of adenine-[8-14C] or guanine-[8-14C]. Among the presumed precursors of caffeine biosynthesis, adenine was the most effective, whereas guanine was the least effective. After administration of a ‘pulse’ of adenine-[8-14C], almost all of the adenine-[14C] supplied disappeared by 30 hr, and 14C-labelled caffeine and RNA purine nucleotide (AMP and GMP) synthesis increased throughout the experimental period, whereas the radioactivities of free purine nucleotides, 7-methylxanthine and theobromine increased during the first 10 hr incubation period, followed by a steady decrease. By contrast, more than 45% of the guanine-[8-14C] supplied remained unchanged even after a 120 hr period. The main products of guanine-[8-14C] metabolism in tea shoot tips were guanine nucleotides, theobromine, caffeine and the GMP of RNA. The results support the hypothesis that the purine nucleotides are synthesized from adenine and guanine via the pathway of purine salvage. Adenylate is readily converted into other purine nucleotides, whereas the conversion rate of guanylate into other purine nucleotides is very low.The results also support the view that 7-methylxanthine and theobromine are precursors of caffeine. For the origin of the purine ring in caffeine, purine nucleotides in the nucleotide pool rather than in nucleic acids are suggested.  相似文献   

2.
1. The metabolism of xanthine and hypoxanthine in excised shoot tips of tea was studied with micromolar amounts of [2(-14)C]xanthine or [8(-14)C]hypoxanthine. Almost all of the radioactive compounds supplied were utilized by tea shoot tips by 30 h after their uptake. 2. The main products of [2(-14)C]xanthine and [8(-14)C]hypoxanthine metabolism in tea shoots were urea, allantoin and allantoic acid. There was also incorporation of the label into theobromine, caffeine and RNA purine nucleotides. 3. The results indicate that tea plants can catabolize purine bases by the same pathways as animals. It is also suggested that tea plants have the ability to snythesize purine nucleotides from glycine by the pathways of purine biosynthesis de novo and from hypoxanthine and xanthine by the pathway of purine salvage. 4. The results of incorporation of more radioactivity from [8(-14)C]hypoxanthine than from [2(-14)C]xanthine into RNA purine nucleotides and caffeine suggest that hypoxanthine is a more effective precursor of caffeine biosynthesis than xanthine. The formation of caffeine from hypoxanthine is a result of nucleotide synthesis via the pathway of purine salvage.  相似文献   

3.
Metabolism of methylamine in the tea plant (Thea sinensis L.)   总被引:5,自引:4,他引:1       下载免费PDF全文
1. The metabolism of methylamine in excised shoot tips of tea was studied with micromolar amounts of [(14)C]methylamine. Of the [(14)C]methylamine supplied 57% was utilized by tea shoots during the 10h experimental period. 2. The main products of [(14)C]methylamine metabolism in tea shoots were serine, gamma-glutamylmethylamide, theobromine, caffeine and CO(2). There was also incorporation of the label into glutamate, aspartate, RNA purine nucleotides and S-adenosylmethionine. 3. The formation of methylamine from gamma-glutamylmethylamide was confirmed by feeding tea shoots with gamma-glutamyl[(14)C]methylamide. The products of gamma-glutamyl[(14)C]methylamide metabolism in tea plants were serine, theobromine, caffeine, glutamate and aspartate. 4. The results indicate that the oxidation of methylamine to formaldehyde is the first step of methylamine utilization. Labelled formaldehyde released by the metabolism of methylamine leads to the incorporation of the label into metabolites on the C(1) pathways of this compound. It is also suggested that formaldehyde is further oxidized via formate to CO(2). 5. The role of gamma-glutamylmethylamide in methylamine metabolism in tea plants is discussed. 6. Results support the view that theobromine is the immediate precursor of caffeine.  相似文献   

4.
Biosynthesis of Caffeine in Flower Buds of Camellia sinensis   总被引:1,自引:0,他引:1  
The biosynthesis of purine alkaloids in flower buds of tea plantswas investigated. More than 25% of total radioactivity of [8-14C]adeninetaken up by stamens isolated from tea flower buds was foundto have been incorporated into purine alkaloids, namely, theobromineand caffeine, 24 h after administration of the labelled compound.Pulse-chase experiments indicated that [8-14C]adenine takenup by the stamens was converted to adenine nucleotides and subsequentlyincorporated into theobromine and caffeine. Since 5 µMcoformycin, an inhibitor of AMP deaminase, inhibited the incorporationof radioactivity into the purine alkaloids, synthesis of caffeinefrom adenine nucleotides seems to be initiated by the reactionof AMP deaminase. Although most of the radioactivity from [8-14C]inosinewas recovered as CO2 and ureides, considerable amounts of radioactivitywere recovered as purine alkaloids. The incorporation of radioactivityfrom [8-14C]inosine into the purine alkaloids was not affectedby coformycin. The five enzymes involved in synthesis of 5-phosphoribosyl-1-pyrophosphatefrom glucose were present in the stamens and petals of tea flowerbuds. From present and previous results, the pathway for thebiosynthesis of caffeine from adenine nucleotides in flowerbuds of tea is discussed.Copyright 1993, 1999 Academic Press Camellia sinensis, tea, stamen, flower, biosynthesis, purine alkaloids, caffeine, theobromine, adenine nucleotides, nucleotide biosynthesis  相似文献   

5.
Biosynthesis of caffeine in tea callus tissue   总被引:9,自引:5,他引:4       下载免费PDF全文
1. A study of caffeine biosynthesis has been made by following the incorporation of radioactive carbon dioxide and methionine into the methylated purines produced by tea callus tissue. 2. The uptake of the radioactive labels into nucleic acid and caffeine was followed over a period of approximately 9h. 3. The distribution of the radioactive labels in both nucleic acid and caffeine was determined after incorporation and subsequent incubation of the tissue in a non-radioactive medium. 4. The results of the experiments indicated that the caffeine arose from purines released from the breakdown of nucleic acids rather than that it was formed directly from a purine pool. 5. A metabolic scheme to show the production of caffeine from the nucleotides of the nucleic acid is discussed.  相似文献   

6.
Theacrine (1,3,7,9-tetramethyluric acid) and caffeine were the major purine alkaloids in the leaves of an unusual Chinese tea known as kucha (Camellia assamica var. kucha). Endogenous levels of theacrine and caffeine in expanding buds and young leaves were ca. 2.8 and 0.6-2.7% of the dry wt, respectively, but the concentrations were lower in the mature leaves. Radioactivity from S-adenosyl-L-[methyl-14C]methionine was incorporated into theacrine as well as theobromine and caffeine by leaf disks of kucha, indicating that S-adenosyl-L-methionine acts as the methyl donor not only for caffeine biosynthesis but also for theacrine production. [8-14C]Caffeine was converted to theacrine by kucha leaves with highest incorporation occurring in expanding buds. When [8-14C]adenosine, the most effective purine precursor for caffeine biosynthesis in tea (Camellia sinensis), was incubated with young kucha leaves for 24 h, up to 1% of total radioactivity was recovered in theacrine. However, pulse-chase experiments with [8-14C]adenosine demonstrated much more extensive incorporation of label into caffeine than theacrine, possibly because of dilution of [14C]caffeine produced by the large endogenous caffeine pool. These results indicate that in kucha leaves theacrine is synthesized from caffeine in what is probably a three-step pathway with 1,3,7-methyluric acid acting an intermediate. This is a first demonstration that theacrine is synthesized from adenosine via caffeine.  相似文献   

7.
Sphingomyelin synthesis was studied in slices of rat heart by using [Me-14C]choline, [1,2-14C]ethanolamine, S-adenosyl-L-[14C]methionine and [32P]Pi as as precursors. In the presence of both [Me-14C]choline and [32P]Pi the ratio of the specific radioactivities of 14C and 32P in phosphatidylcholine was greater than in sphingomyelin at all the times studied. This suggested that synthesis of phosphatidylcholine and sphingomyelin de novo did not involve the utilization of a common pool of cytidine diphosphate choline. In addition, studies with [1,2-14C]ethanolamine and S-adenosyl-L-[14C]methionine indicated that a quantitatively significant pool of choline, derived from these precursors, was selectively utilized for sphingomyelin formation. This pool was not represented by phosphatidylcholine formed by methylation of phosphatidylethanolamine or by other pathways.  相似文献   

8.
Keya CA  Crozier A  Ashihara H 《FEBS letters》2003,554(3):473-477
The effects of ribavirin, an inhibitor of inosine-5'-monophosphate (IMP) dehydrogenase, on [8-(14)C]inosine metabolism in tea leaves, coffee leaves and coffee fruits were investigated. Incorporation of radioactivity from [8-(14)C]inosine into purine alkaloids, such as theobromine and caffeine, guanine residues of RNA, and CO(2) was reduced by ribavirin, while incorporation into nucleotides, including IMP and adenine residues of RNA, was increased. The results indicate that inhibition of IMP dehydrogenase by ribavirin inhibits both caffeine and guanine nucleotide biosynthesis in caffeine-forming plants. The use of IMP dehydrogenase-deficient plants as a potential source of good quality caffeine-deficient tea and coffee plants is discussed.  相似文献   

9.
The Escherichia coli cysG gene was successfully subcloned and over-expressed to produce a 52 kDa protein that was purified to homogeneity. This protein was shown to catalyse the S-adenosylmethionine-dependent methylation of uroporphyrinogen III to give a product identified as sirohydrochlorin on the basis of its absorption spectra, incorporation of 14C label from S-adenosyl[Me-14C]methionine and mass and 1H-n.m.r. spectra of its octamethyl ester. Further confirmation of the structure was obtained from a 14C-n.m.r. spectrum of the methyl ester produced by incubation of the methylase with uroporphyrinogen III, derived from [4.6-13C2]porphobilinogen, and S-adenosyl[Me-13C]methionine.  相似文献   

10.
This report describes studies designed to evaluate possible inhibitory effects of diaminoantifolates on folate-dependent biosynthetic enzymes in intact L1210 leukemia cells. A novel approach is described which involves an assessment of the metabolism of and biosynthetic flux of the one-carbon moiety from (6S)5-formyltetrahydrofolate in folate-depleted cells. Pretreatment with methotrexate (10 microM), resulting in the formation of methotrexate polyglutamates, or continuous incubation with trimetrexate (1 microM) inhibited growth of folate-depleted L1210 cells in the presence of folic acid or 5-formyltetrahydrolate. In both control and drug-treated cells, double-labeled (6S)-5-[14C]formyl[3H]tetrahydrofolate was rapidly metabolized with the loss of the [14C]formyl group. Under all conditions, the predominant metabolite was 10-formyl[3H]tetrahydrofolate, detectable both intracellularly and extracellularly. In drug-treated cells, there was a remarkably small decrease in the level of 10-formyl[3H]tetrahydrofolate (approximately 30%) and a 10-fold rise in the level of [3H]dihydrofolate to less than 20% of the total folate pool. The incorporation of [14C]formyl group from 5-[14C]formyltetrahydrofolate into thymidylate, serine, and methionine was unaffected by the presence of 1 microM trimetrexate, consistent with the generation of sufficient 5,10-[14C]methylenetetrahydrofolate to drive these reactions. Similarly, the presence of methotrexate polyglutamates had no effect at the level of amino acid synthesis; however, carbon transfer into thymidylate was markedly inhibited. Even though 10-formyltetrahydrofolate was readily formed from 5-formyltetrahydrofolate in this model, the net incorporation of 14C from 5-[14C]formyltetrahydrofolate into purine nucleotides was inhibited by both methotrexate and trimetrexate treatments. Similar findings were obtained when [14C]glycine incorporation into purine nucleotides was monitored in cells incubated with unlabeled 5-formyltetrahydrofolate. Finally, in antifolate-treated cells incubated with unlabeled 5-formyl-tetrahydrofolate, transfer of 14C from [14C]formate or [14C]serine into biosynthetic products or incorporation of [3H]deoxyuridine into nucleic acids was potently inhibited. These results suggest that insufficient levels of tetrahydrofolate and 5, 10-methylenetetrahydrofolate were formed to drive these reactions despite the presence of high levels of 10-formyltetrahydrofolate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1. Extracts prepared from tea leaves with Polyclar AT (insoluble polyvinylpyrrolidine) contained two methyltransferase activities catalysing the transfer of methyl groups from S-adenosylmethionine to 7-methylxanthine, producing theobromine, and to theobromine, producing caffeine. 2. The methyltransferases exhibited the same pH optimum (8.4) and a similar pattern of effects by metal ions, thiol inhibitors and metal-chelating reagents, both for theobromine and caffeine synthesis. Mg2+, Mn2+ and Ca2+ slightly stimulated enzyme activity but they were not essential. Paraxanthine was shown to be most active among methylxanthines, as the methyl acceptor. However, the formation of paraxanthine from 1-methylxanthine was very low and that from 7-methylxanthine was nil, suggesting that the synthesis of caffeine from paraxanthine is of little importance in intact plants. Xanthine, xanthosine, XMP and hypoxanthine were all inactive as methyl acceptors, whereas [2(-14)C]xanthine and [8(-14)C]hypoxanthine were catabolized to allantoin and urea by tea-leaf extracts. The apparent Km values are as follows: 7-methylxanthine, 1.0 times 10(-14)M; theobromine, 1.0 times 10(-3)M; paraxanthine, 0.2 times 10(-3)M; S-adenosylmethionine, 0.25 times 10(-4)M (with each of the three substrates). 3. The results suggest that the pathway for caffeine biosynthesis is as follows: 7-methylxanthine leads to theobromine leads to caffeine. In contrast, it is suggested that theophylline is synthesized from 1-methylxanthine. The methyl groups of the purine ring of caffeine are all derived directly from the methyl group of S-adenosylmethionine. Little is known about the pathways leading to the formation of 7-methylxanthine. 4. A good correlation between caffeine synthesis and shoot formation or growth of tea seedlings was shown, suggesting that the methylating systems in caffeine synthesis are closely associated with purine nucleotide and nucleic acid metabolism in tea plants.  相似文献   

12.
The metabolism of 5-[Me-14 C]methyltetrahydrofolate in Lactobacillus casei proceeded oxidatively with incorporation of label into purine and thymidylate derivatives. No labelled methionine was formed. (l)-5-Methyltetrahydrofolate, the natural isomer, was not a substrate for the L. casei folylpoly-gamma-glutamate synthetase although the unnatural (d)-isomer was slowly metabolized to the diglutamate form.  相似文献   

13.
Labeling of sulfolipids in Nitzschia alba was studied after growth of the cells in media containing L-[35S]cystine, L-[35S], L-[35S]cysteine, L-[35S]-methionine or a mixture of L-[Me-3H]methionine and L-[35S]methionine, [35S]Cysteine or [35S]cystine labeled the deoxyceramide sulfonate and the sulfonium analog, phosphatidylsulfocholine (and its lyso derivative) but not the sterol sulfate nor the sulfoquinovosyl diglyceride; [35S]methionine labeled only the phosphatidylsulfocholine and its lyso derivative. With the [35S]- and [Me-3H]methionine mixture (3H/35S ratio 1.0) the phosphatidylsulfocholine had a 3H/35 S ratio of 1.5 indicating that both sulfonium methyl groups were derived from methionine. Probable biosynthetic pathways for these novel sulfolipids are discussed.  相似文献   

14.
Radioactivity from [2-14C]glycine enters C-2 of the thiazole moiety of thiamin and no other site, in Saccharomyces cerevisiae (strains A.T.C.C. 24903 and 39916, H.J. Bunker). Radioactivity from L-[Me-14C]methionine or from DL-[2-14C]tyrosine does not enter thiamin.  相似文献   

15.
In anti-sense and RNA interference transgenic plants of Coffea canephora in which the expression of CaMXMT1 was suppressed, caffeine biosynthesis from [8-(14)C]adenine was investigated, together with the overall metabolism of [8-(14)C]adenine. Compared with wild type control plants, total purine alkaloid biosynthesis from adenine and conversion of theobromine to caffeine were both reduced in the transgenic plants. As found previously, [8-(14)C]adenine was metabolised to salvage products (nucleotides and RNA), to degradation products (ureides and CO(2)) and to purine alkaloids (theobromine and caffeine). In the transgenic plants, metabolism of [8-(14)C]adenine shifted from purine alkaloid synthesis to purine catabolism or salvage for nucleotides. HPLC analysis revealed a significantly reduced caffeine content in the transgenic plants. A small quantity (less than 20 nmol g(-1) fresh weight) of xanthosine had accumulated in at least one of the transgenic plants.  相似文献   

16.
Phosphopentose stimulation of nucleic acids biosynthesis for 3h after subcutaneous phosphopentose administration in doses of 18 and 27 mg per rat has been stated. Injections of phosphopentoses (ribose-5-phosphate, xylulose-6-phosphate, ribulose-5-phosphate in the ratio of 1.0:0.3:0.3) were followed by a two-fold increase in the rate of [2-14C] orothic acid incorporation into cytoplasmic RNA of the rat liver. It is supposed that rapidly exchanging types of RNA contribute most of all to the effect of the label incorporation increase and the stimulation mechanism is associated with a rise of phosphoribosyl pyrophosphate accessibility as a substrate and an allosteric regulator of key enzymes of the synthesis of purine and pyrimidine nucleotides.  相似文献   

17.
The biosynthesis and metabolism of purine alkaloids in leaves ofCamellia ptilophylla (cocoa tea), a new tea resource in China, have been investigated. The major purine alkaloid was theobromine, with theophylline also being present as a minor component. Caffeine was not accumulated in detectable quantities. Theobromine was synthesized from [8-14C] adenine and the rate of its biosynthesis in the segments from young and mature leaves from flush shoots was approximately 10 times higher than that from aged leaves from 1-year old shoots. Neither cellfree extracts nor segments fromC. ptilophylla leaves could convert theobromine to caffeine. A large quantity of [2-14C] xanthine taken up by the leaf segments was degraded to14CO2 via the conventional purine catabolic pathway that includes allantoin as an intermediate. However, small amounts of [2-14C] xanthine were also converted to theobromine. Considerable amounts of [8-14C] caffeine exogenously supplied to the leaf segments ofC. ptilophylla was changed to theobromine. These results indicate that leaves ofC. ptilophylla exhibit unusual purine alkaloid metabolism as i) they have the capacity to synthesize theobromine from adenine nucleotides, but they lack adequate methyltransferase activity to convert of theobromine to caffeine in detectable quantities, ii) the leaves have a capacity to convert xanthine to theobromine, probably via 3-methylxanthine.  相似文献   

18.
Nazario GM  Lovatt CJ 《Plant physiology》1993,103(4):1195-1201
The capacity of Coffea arabica leaves (5- x 5-mm pieces) to synthesize de novo and catabolize purine nucleotides to provide precursors for caffeine (1,3,7-trimethylxanthine) was investigated. Consistent with de novo synthesis, glycine, bicarbonate, and formate were incorporated into the purine ring of inosine 5[prime]-monophosphate (IMP) and adenine nucleotides ([sigma]Ade); azaserine, a known inhibitor of purine de novo synthesis, inhibited incorporation. Activity of the de novo pathway in C. arabica per g fresh weight of leaf tissue during a 3-h incubation period was 8 [plus or minus] 4 nmol of formate incorporated into IMP, 61 [plus or minus] 7 nmol into [sigma]Ade, and 150 nmol into caffeine (the latter during a 7-h incubation). Coffee leaves exhibited classical purine catabolism. Radiolabeled formate, inosine, adenosine, and adenine were incorporated into hypoxanthine and xanthine, which were catabolized to allantoin and urea. Urease activity was demonstrated. Per g fresh weight, coffee leaf squares incorporated 90 [plus or minus] 22 nmol of xanthine into caffeine in 7 h but degraded 102 [plus or minus] 1 nmol of xanthine to allantoin in 3 h. Feedback control of de novo purine biosynthesis was contrasted in C. arabica and Cucurbita pepo, a species that does not synthesize purine alkaloids. End-product inhibition was demonstrated to occur in both species but at different enzyme reactions.  相似文献   

19.
Light enhanced the growth of tea seedlings but the amount ofcaffeine produced in light was almost identical to that in theshade, indicating that more synthesis and/or less degradationof caffeine Occur(s) in shaded seedlings. Administering [N1-methyl-14C]-caffeinecaffeine to tea shoot tips showed that light promotes the degradationof caffeine only slightly. (Received January 28, 1985; Accepted February 25, 1985)  相似文献   

20.
Metabolic fate of guanosine in higher plants   总被引:2,自引:1,他引:1  
The aim of the present study was to investigate the metabolic fate of guanine nucleotides in higher plants. The rate of uptake of [8-14C]guanosine by suspension-cultured Catharanthus roseus cells was more than 20 times higher than that of [8-14C]guanine. The rate of uptake of [8-14C]guanosine increased with the age of the culture. Pulse-chase experiments with [8-14C]guanosine revealed that some of the guanosine that had been taken up by the cells was converted to guanine nucleotides and incorporated into nucleic acids. A significant amount of [8-14C]guanosine was degraded directly to xanthine, allantoin and allantoic acid, with the generation of 14CO2 as the final product. The rate of salvage of [8-14C]guanosine for the synthesis of nucleic acids was highest in young cells, while the rate of degradation increased with the age of the cells. In segments of roots from Vigna mungo seedlings, nearly 50% of the [8-14C]guanosine that had been absorbed over the course of 15 min was recovered in guanine nucleotides. A significant amount of the radioactivity in nucleotides became associated with nucleic acids and ureides during ‘chase’ periods. In segments of young leaves of Camellia sinensis, [8-14C]guanosine was initially incorporated into guanine nucleotides, nucleic acids, theobromine and ureides, and the radioactivity in these compounds was transferred to caffeine and CO2 during a 24-h incubation. Our results suggest that guanosine is an intermediate in the catabolism of guanine nucleotides and that it is re-utilised for nucleotide synthesis by ‘salvage’ reactions. Guanosine was catabolised by the conventional degradation pathway via xanthine and allantoin. In some plants, guanosine is also utilised for the formation of ureide or the biosynthesis of caffeine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号