首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to assess the role of platelet ice microalgal communities in seeding pelagic blooms. Nutrient dynamics, microalgal biomass, photosynthetic parameters, cell densities and species succession were studied in two mesocosm experiments, designed to simulate the transition of microalgal communities from platelet ice habitat to pelagic conditions. The microalgal assemblages were dominated by diatoms, 70% of which were benthic species such as Amphiprora kufferathii, Nitzschia stellata, and Berkeleya adeliensis. Photoacclimation of benthic species was inadequate also at relatively low irradiances. Exceptional growth capacity at different light levels was observed for pelagic species such as Fragilariopsis cylindrus and Chaetoceros spp. which may be important in seeding blooms at ice breakup. Fragilariopsis cylindrus showed high growth rates both at 65 and 10% of incident light and in nutrient replete as well as in nutrient depleted conditions. Five days after inoculation, phytoplankton biomass increased and nutrient concentrations decreased in both light conditions. Nutrient uptake rates were up to 9.10 μmol L−1 d−1 of TIN in the high light tank and 6.18 μmol L−1 d−1 in the low light tank and nutrient depletion in the high light tank occurred 3 days prior to depletion in the low light tank. At nutrient depletion, biomass concentrations were similar in both tanks, 30 and 34 μg Chla L−1. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

2.
Strong environmental seasonality is a basic feature of the Arctic system, still there are few published records of the seasonal variability of the Arctic marine biota. This study examined the year-round seasonal changes of soft bottom macro- and meiobenthic standing stocks and diversity on a station located in an Arctic fjord (Adventfjorden, Spitsbergen). The seasonality observed in benthic biota was related to the pelagic processes, primarily the seasonal fluxes of organic and inorganic particles. The highest abundance, biomass and richness of benthic fauna occurred in the spring after the phytoplankton bloom. During the summer, when a high load of glacial mineral material was transported to the fiord, the number of both meio- and macrobenthic individuals decreased remarkably. The strong inorganic sedimentation in summer was accompanied by a decline in macrobenthic species richness, but had no effects on evenness. Redundancy analysis (RDA) pointed to granulometric composition of sediments (depended on mineral sedimentation) and organic fluxes as factors best related to meio- and macrobenthic taxonomic composition, but no clear seasonal trend could be observed on the nMDS plots based on meiobenthic higher taxa or macrobenthic species abundances in the samples. This study addresses the possible effects of changes in the winter ice cover on the fjordic benthic systems because it was performed in a year with no ice cover on the fjord.  相似文献   

3.
New sets of diatom-specific biomarkers, highly branched isoprenoids (HBIs), have been recently proposed to trace carbon flow from ice algae and pelagic phytoplankton to higher trophic level organisms. In the Antarctic, diene, a HBI of sea ice origin was more abundant in ice-associated species, while triene, a HBI of phytoplanktonic origin, was more abundant in pelagic species. However, this HBI approach has never been applied on Antarctic benthic species. Here, we analyzed diene and triene in the liver and the muscle of eight Antarctic coastal fish species (108 specimens). HBI lipids were detected in all specimens, confirming the contribution of sea ice and pelagic organic matter in coastal benthic fish species. Moreover, HBI markers were much more concentrated in the liver than in white muscle, and the relative concentrations of diene and triene strongly varied among species, as a probable result of species differences in feeding habits and trophic ecology. Seasonal variations in HBI concentrations were detected during the whole year in white muscle, but not in the liver. These findings are consistent with the well-known spring bloom in November–December, just before the annual ice break up, and the second proliferation of ice algae during the land-fast ice formation, in April–May. Therefore, investigation of HBI lipids in white muscle will likely shed new light on seasonal changes in the contribution of ice algal-derived organic matter in higher trophic level organisms.  相似文献   

4.
Diatoms are the primary source of nutrition and energy for the Southern Ocean ecosystem. Microalgae, including diatoms, synthesise biological macromolecules such as lipids, proteins and carbohydrates for growth, reproduction and acclimation to prevailing environmental conditions. Here we show that three key species of Southern Ocean diatom (Fragilariopsis cylindrus, Chaetoceros simplex and Pseudo-nitzschia subcurvata) exhibited phenotypic plasticity in response to salinity and temperature regimes experienced during the seasonal formation and decay of sea ice. The degree of phenotypic plasticity, in terms of changes in macromolecular composition, was highly species-specific and consistent with each species’ known distribution and abundance throughout sea ice, meltwater and pelagic habitats, suggesting that phenotypic plasticity may have been selected for by the extreme variability of the polar marine environment. We argue that changes in diatom macromolecular composition and shifts in species dominance in response to a changing climate have the potential to alter nutrient and energy fluxes throughout the Southern Ocean ecosystem.  相似文献   

5.
The seasonal periodicity of algae on Antarctic fellfield soils   总被引:3,自引:0,他引:3  
Martin C. Davey 《Ecography》1991,14(2):112-120
Investigation of the seasonal changes in composition of an immature Antarctic fellfield cyanobacterial/microalgal community has demonstrated a repeated periodicity. The community consisted of only 14 species. Early spring growth of filamentous chlorophytes under snow and ice was followed by summer dominance of the community by cyanobacteria, particularly Phormidium autumnale. Limitation of the chlorophyte populations appeared to be a result of either dehydration of the soil or increased irradiance. The population maximum of the cyanobacteria occurred in mid-summer, although there were no obvious reasons for the cessation of growth at this time, and declined rapidly in late summer. Regrowth of the community occurred from very small inocula each spring, most of the biomass having been lost during late summer or during the washout associated with the spring thaw. This regrowth demonstrates the potential for the population to establish an immature fellfield community very rapidly foliowing exposure by glacial retreat or physical disturbance.  相似文献   

6.
The ecology of periphytic rotifers   总被引:3,自引:2,他引:3  
Duggan  Ian C. 《Hydrobiologia》2001,(1):139-148
The ecology of rotifer assemblages in the periphyton has received little attention relative to that of pelagic rotifers. This paper reviews the ecology of periphytic rotifers, with particular emphasis on the role of macrophytes in the structuring of rotifer assemblages spatially and temporally, and compares these aspects with the dynamics of better known pelagic rotifer communities. Littoral rotifer periphyton communities are typically diverse in lakes, and have composition dissimilar to that of the open water. In rivers, diversity and composition in the pelagic and littoral appear to be similar. Rotifers show preference for macrophyte species they associate with, probably through differences in physical structure or complexity, food concentration or composition, chemical factors, macrophyte age, and differences in the degree of protection from predation provided by macrophytes. These mechanisms are in general not well investigated in rotifers. Factors affecting the seasonal dynamics of periphytic communities appear to be similar to pelagic communities, with seasonal dynamics of substrates and disturbance by flooding or drying also being important.  相似文献   

7.
Lotic epilithic biofilms are submitted to seasonal disturbances (e.g. flood events, self-detachment), which influence the biomass, diversity and viability of their algal and bacterial communities. The objective of this study is to examine whether (1) biofilm-dwelling nematodes respond to such seasonal changes in terms of diversity and community structure, (2) nematode species and feeding-types distribution respond to the varied trophic situations within the biofilm, since variations in biofilm microalgal composition may represent a variation in available food. The biofilm-dwelling nematode community was monitored in a temperate river over an 18 month period with a high sampling frequency. These data were linked to environmental abiotic and biofilm biotic factors. Nematode density was positively correlated to biofilm and microalgal biomass, but was dampened by floods. A clear seasonal pattern of the community was detected (summer shift), so that two nematode groups stand out: (1) the epistrate-feeders Chromadorina bioculata (Schultze in Carus, 1857) and Chromadorina viridis (Linstow, 1876) were primarily related to diatom availability, and dominated the nematode assemblage most of the time, (2) seven species from various feeding types (deposit-feeders, suction-feeders and chewers) grew mainly under summer conditions concomitantly to a change of biofilm trophic status and microalgal composition. Overall, the results suggested that, in addition to abiotic disturbances, the availability of potential preys in the biofilm might represent an important driver of nematode community patterns.  相似文献   

8.
Impacts of climate change on polar seas The polar seas in the Arctic and Antarctic are characterized by extreme cold and the prevalence of sea ice, which provides a unique polar habitat but also strongly affects the pelagic and benthic biota beneath. Life conditions for the marine fauna and flora differ considerably between the Arctic and Southern Oceans, as a result of contrasts in geography, geological history, as well as seasonal dynamics in light regime, sea ice cover and, hence, biological production. Climate change is particularly obvious in the Arctic Ocean and off the Antarctic Peninsula where warming results in a rapid shrinkage of the summer sea ice cover. Such decline threatens the sea‐ice communities and their associated fauna and will also have far reaching effects for the plankton and benthos of the polar seas.  相似文献   

9.
Sea ice is a unique habitat in polar seas. A diverse assemblage of plants and animals lives in its interior parts and at the ice-water interface. Their distribution is to a large extent controlled by abiotic parameters such as light, salinity and space, as well as food availability. In both the Arctic and Antarctic, the highest metazoan concentrations occur mostly in the bottom centimetres of the sea ice. Dominant metazoans are nematodes, turbellarians, rotifers and crustaceans. The ice-water interface itself houses in addition to endemic amphipods migrants from both the ice and the pelagic realm. To survive with the environmental conditions of the sea ice habitat, the ice biota is adapted, specifically to seasonal salinity variations from below 5 to above 60 PSU. Sea ice metazoans feed mainly on the algae growing within the sea ice. The loss of habitat during ice melt periods can lead to substantial sedimentation of ice fauna to the sea floor, where it might act as food source for the benthos.  相似文献   

10.
Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.  相似文献   

11.
Arctic organisms are adapted to the strong seasonality of environmental forcing. A small timing mismatch between biological processes and the environment could potentially have significant consequences for the entire food web. Climate warming causes shrinking ice coverage and earlier ice retreat in the Arctic, which is likely to change the timing of primary production. In this study, we test predictions on the interactions among sea ice phenology and production timing of ice algae and pelagic phytoplankton. We do so using the following (1) a synthesis of available satellite observation data; and (2) the application of a coupled ice‐ocean ecosystem model. The data and model results suggest that, over a large portion of the Arctic marginal seas, the timing variability in ice retreat at a specific location has a strong impact on the timing variability in pelagic phytoplankton peaks, but weak or no impact on the timing of ice‐algae peaks in those regions. The model predicts latitudinal and regional differences in the timing of ice algae biomass peak (varying from April to May) and the time lags between ice algae and pelagic phytoplankton peaks (varying from 45 to 90 days). The correlation between the time lag and ice retreat is significant in areas where ice retreat has no significant impact on ice‐algae peak timing, suggesting that changes in pelagic phytoplankton peak timing control the variability in time lags. Phenological variability in primary production is likely to have consequences for higher trophic levels, particularly for the zooplankton grazers, whose main food source is composed of the dually pulsed algae production of the Arctic.  相似文献   

12.
Sea ice loss will indirectly alter energy transfer through the pelagic food web and ultimately impact apex predators. We quantified spring-time trends in sea ice recession around each of 46 thick-billed murre (Uria lomvia) colonies in west Greenland across 20 degrees of latitude and investigated the magnitude and timing of the associated spring-time primary production. A geographical information system was used to extract satellite-based observations of sea ice concentration from the Nimbus-7 scanning multichannel microwave radiometer (SMMR, 1979-1987) and the Defence Meteorological Satellite Programs Special Sensor Microwave/Imager (SSMI, 1987-2004), and satellite-based observations of chlorophyll a from the moderate resolution imaging spectroradiometer (MODIS: EOS-Terra satellite) in weekly intervals in circular buffers around each colony site (150 km in radius). Rapid recession of high Arctic seasonal ice cover created a temporally predictable primary production bloom and associated trophic cascade in water gradually exposed to solar radiation. This pattern was largely absent from lower latitudes where little to no sea ice resulted in a temporally variable primary production bloom driven by nutrient cycling and upwelling uncoupled to ice. The relationship between the rate and variability of sea ice recession and colony size of thick-billed murres shows that periodical confinement of the trophic cascade at high latitudes determines the carrying capacity for Arctic seabirds during the breeding period.  相似文献   

13.
The present study focuses on temporal and microscale spatial variation of the community structure and richness of subaerial microalgae growing on the bark of European beech (Fagus sylvatica) trees in temperate deciduous forests. Subaerial phototrophic biofilms present common and conspicuous microalgal communities growing on a variety of natural and man‐made substrata. However, in comparison with other major microalgal communities such as phytoplankton and microphytobenthos, basic patterns of their spatio‐temporal variation remain largely unknown. The bark samples were collected six times each spring and autumn in a period of 3 years (2010–2013) and were cultured on agar plates, and then individual clonal strains were identified by light microscopy. A total of 55 morphotypes (considered as operational taxonomic units for subsequent analyses) were recognized, which mainly belong to the classes Trebouxiophyceae and Chlorophyceae. Interestingly, temporal variation explained the largest proportion of variation in the community structure. This variation was primarily related to seasonal fluctuations, and although the communities recorded in spring and autumn showed many overlapping taxa, a clear distinction in species composition and abundance was observed. However, the microhabitat characteristics such as bark roughness also significantly structured the microalgal community. Conversely, spatial factors such as the height of the samples above ground or distance of the samples on a trunk seemed to be of lesser importance on this scale. Thus, we concluded that the previously unrecognized seasonal changes, resulting from variation in temperature, humidity, and irradiance, as well as the non‐seasonal temporal changes, possibly resulting from local colonization or extinction of individual taxa, should be considered as one of the important factors in structuring aerial microalgal communities.  相似文献   

14.
The structure, functioning and dynamics of polar marine ecosystems are strongly influenced by the extent of sea ice. Ice algae and pelagic phytoplankton represent the primary sources of nutrition for higher trophic-level organisms in seasonally ice-covered areas, but their relative contributions to polar marine consumers remain largely unexplored. Here, we investigated the potential of diatom-specific lipid markers and highly branched isoprenoids (HBIs) for estimating the importance of these two carbon pools in an Antarctic pelagic ecosystem. Using GC-MS analysis, we studied HBI biomarkers in key marine species over three years in Adélie Land, Antarctica: euphausiids (ice krill Euphausia crystallorophias and Antarctic krill E. superba), fish (bald notothens Pagothenia borchgrevinki and Antarctic silverfish Pleuragramma antarcticum) and seabirds (Adélie penguins Pygoscelis adeliae, snow petrels Pagodroma nivea and cape petrels Daption capense). This study provides the first evidence of the incorporation of HBI lipids in Antarctic pelagic consumers. Specifically, a di-unsaturated HBI (diene) of sea ice origin was more abundant in ice-associated species than in pelagic species, whereas a tri-unsaturated HBI (triene) of phytoplanktonic origin was more abundant in pelagic species than in ice-associated species. Moreover, the relative abundances of diene and triene in seabird tissues and eggs were higher during a year of good sea ice conditions than in a year of poor ice conditions. In turn, the higher contribution of ice algal derived organic matter to the diet of seabirds was related to earlier breeding and higher breeding success. HBI biomarkers are a promising tool for estimating the contribution of organic matter derived from ice algae in pelagic consumers from Antarctica.  相似文献   

15.
Summary During the austral summer of 1975–76 and winter of 1977 benthic and water column chlorophyll a and phaeopigments were measured at several sites along the east and west sides of McMurdo Sound, Antarctica. Estimates of in situ primary productivity were made at some McMurdo Sound locations. Additionally, water column samples were collected at 5 stations in the Ross Sea during January, 1976. Standing stock data are analyzed to identify seasonal and spatial patterns. Variability in algal standing stock was related to ambient light levels and appeared to be mediated by ice and snow cover whereby the highest algal standing stock was present under high light conditions (low ice and snow cover, shallow water, summer). Differences in published benthic invertebrate densities appear to be closely allied to differences in benthic primary production, and less so to in situ planktonic ice microalgal production.  相似文献   

16.
Arctic sea ice provides microhabitats for biota that inhabit the liquid‐filled network of brine channels and the ice–water interface. We used meta‐analysis of 23 published and unpublished datasets comprising 721 ice cores to synthesize the variability in composition and abundance of sea ice meiofauna at spatial scales ranging from within a single ice core to pan‐Arctic and seasonal scales. Two‐thirds of meiofauna individuals occurred in the bottom 10 cm of the ice. Locally, replicate cores taken within meters of each other were broadly similar in meiofauna composition and abundance, while those a few km apart varied more; 75% of variation was explained by station. At the regional scale (Bering Sea first‐year ice), meiofauna abundance varied over two orders of magnitude. At the pan‐Arctic scale, the same phyla were found across the region, with taxa that have resting stages or tolerance to extreme conditions (e.g., nematodes and rotifers) dominating abundances. Meroplankton, however, was restricted to nearshore locations and landfast sea ice. Light availability, ice thickness, and distance from land were significant predictor variables for community composition on different scales. On a seasonal scale, abundances varied broadly for all taxa and in relation to the annual ice algal bloom cycle in both landfast and pack ice. Documentation of ice biota composition, abundance, and natural variability is critical for evaluating responses to decline in Arctic sea ice. Consistent methodology and protocols must be established for comparability of meiofauna monitoring across the Arctic. We recommend to (1) increase taxonomic resolution of sea ice meiofauna, (2) focus sampling on times of peak abundance when seasonal sampling is impossible, (3) include the bottom 30 cm of ice cores rather than only bottom 10 cm, (4) preserve specimens for molecular analysis to improve taxonomic resolution, and (5) formulate a trait‐based framework that relates to ecosystem functioning.  相似文献   

17.
Bacterial community composition among individual, experimentally generated ‘lake snow’ particles may be highly variable. Since such aggregates are seasonally abundant in the mixed upper layer of lakes, we hypothesized that particle-attached (PA) bacteria disproportionally contribute to the small-scale spatial beta diversity of pelagic communities. Community composition was analysed in sets of small (10 mL) samples collected from a pre-alpine lake in May, July and October 2018. Bacteria were classified as free-living (FL) or PA depending on their presence in large, 5-μm pre-filtered reference samples. FL exhibited clear seasonal differences in community composition and assembly. They were spatially uniform in May and July, and only a few FL taxa exhibited significant spatial variability. Spatial heterogeneity of FL in October was caused by high alpha and beta diversity of rare taxa, many with a presumably ‘tychoplanktic’ (alternating attached and free-living) lifestyle. The spatial beta diversity of PA was always high, and only about 10% of their seasonal richness was present in any single sample. Thus, most compositional variability of pelagic bacteria at spatial scales of cm to m either directly or indirectly originated from PA. On a functional level, this genotypic heterogeneity might affect the spatial distribution of rare metabolic traits.  相似文献   

18.
In the Antarctic Ocean salt concentration differs from the bottom to the surface owing to the seasonal forming and melting of sea ice. Antarctic teleosts present different lifestyle from benthic to pelagic. While benthic animals face a constant seawater salinity, benthic–pelagic animals have to face different salt concentration. Branchial morphology and ion–water transport proteins were compared in animals with different lifestyle. The ultrastructure of the gills was investigated by scanning electron microscopy (SEM). Na+/K+/ATPase, Na+/K+/Cl cotransport protein NKCC1 and Aquaporin 3 (AQP3), were investigated by immunohistochemistry. The immunoreactivity for the ion transporter proteins were more intense in the active benthic–pelagic animals and in the icefishes than in the sluggish benthic ones. Conversely, AQP immunoreactivity was stronger in the animals with sedentary lifestyles. The SEM showed the secondary lamellae in the benthic–pelagic animals more densely packed with the exception of the haemoglobin free teleosts.  相似文献   

19.
Biuw M  Nøst OA  Stien A  Zhou Q  Lydersen C  Kovacs KM 《PloS one》2010,5(11):e13816
Weddell Sea hydrography and circulation is driven by influx of Circumpolar Deep Water (CDW) from the Antarctic Circumpolar Current (ACC) at its eastern margin. Entrainment and upwelling of this high-nutrient, oxygen-depleted water mass within the Weddell Gyre also supports the mesopelagic ecosystem within the gyre and the rich benthic community along the Antarctic shelf. We used Conductivity-Temperature-Depth Satellite Relay Data Loggers (CTD-SRDLs) to examine the importance of hydrographic variability, ice cover and season on the movements and diving behavior of southern elephant seals in the eastern Weddell Sea region during their overwinter feeding trips from Bouvetøya. We developed a model describing diving depth as a function of local time of day to account for diel variation in diving behavior. Seals feeding in pelagic ice-free waters during the summer months displayed clear diel variation, with daytime dives reaching 500-1500 m and night-time targeting of the subsurface temperature and salinity maxima characteristic of CDW around 150–300 meters. This pattern was especially clear in the Weddell Cold and Warm Regimes within the gyre, occurred in the ACC, but was absent at the Dronning Maud Land shelf region where seals fed benthically. Diel variation was almost absent in pelagic feeding areas covered by winter sea ice, where seals targeted deep layers around 500–700 meters. Thus, elephant seals appear to switch between feeding strategies when moving between oceanic regimes or in response to seasonal environmental conditions. While they are on the shelf, they exploit the locally-rich benthic ecosystem, while diel patterns in pelagic waters in summer are probably a response to strong vertical migration patterns within the copepod-based pelagic food web. Behavioral flexibility that permits such switching between different feeding strategies may have important consequences regarding the potential for southern elephant seals to adapt to variability or systematic changes in their environment resulting from climate change.  相似文献   

20.
We determined fatty acid (FA) profiles and carbon stable isotopic composition of individual FAs (δ13CFA values) from sea ice particulate organic matter (i-POM) and pelagic POM (p-POM) in the Bering Sea during maximum ice extent, ice melt, and ice-free conditions in 2010. Based on FA biomarkers, differences in relative composition of diatoms, dinoflagellates, and bacteria were inferred for i-POM versus p-POM and for seasonal succession stages in p-POM. Proportions of diatom markers were higher in i-POM (16:4n-1, 6.6–8.7 %; 20:5n-3, 19.6–25.9 %) than in p-POM (16:4n-1, 1.2–4.0 %; 20:5n-3, 5.5–14.0 %). The dinoflagellate marker 22:6n-3/20:5n-3 was highest in p-POM. Bacterial FA concentration was higher in the bottom 1 cm of sea ice (14–245 μg L?1) than in the water column (0.6–1.7 μg L?1). Many i-POM δ13CFA values were higher (up to ~10 ‰) than those of p-POM, and i-POM δ13CFA values increased with day length. The higher i-POM δ13CFA values are most likely related to the reduced dissolved inorganic carbon (DIC) availability within the semi-closed sea ice brine channel system. Based on a modified Rayleigh equation, the fraction of sea ice DIC fixed in i-POM ranged from 12 to 73 %, implying that carbon was not limiting for primary productivity in the sympagic habitat. These differences in FA composition and δ13CFA values between i-POM and p-POM will aid efforts to track the proportional contribution of sea ice algal carbon to higher trophic levels in the Bering Sea and likely other Arctic seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号