首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The basis for the immune response against intracellular pathogens is the recognition by cytotoxic T lymphocytes of antigenic peptides derived from cytosolic proteins, which are presented on the cell surface by major histocompatibility complex (MHC) class I molecules. The understanding of MHC class I-restricted peptide presentation has recently improved dramatically with the elucidation of the structural basis for the specificity of peptide binding to MHC class I molecules and the identification of proteins encoded in the class II region of the MHC that are putatively involved in the production of peptides and their transport into the endoplasmic reticulum, where they assemble with class I molecules.  相似文献   

2.
 Comparison of peptides eluted from human class I and class II major histocompatibility complex (MHC) molecules and the proteins from which they are derived (source proteins) revealed that class I MHC bind peptides derived from proteins that are highly conserved, hydrophilic, and universally expressed, while the peptides themselves are hydrophobic and even more conserved than their source proteins. In contrast, source proteins for class II-bound peptides were not significantly more conserved than a random sample of proteins. Class II-bound peptides were generally more conserved than their source proteins but were significantly less conserved than class I-bound peptides. The characteristics of class I-bound peptides can probably be explained by the selectivity of processing and transport of peptides for binding by class I, while the relative lack of selectivity of peptide binding for class II may explain the high incidence of autoimmune diseases associated with alleles of these molecules. Received: 17 May 1999 / Revised: 5 August 1999  相似文献   

3.
Peptides associated with class II MHC molecules are normally derived from exogenous proteins, whereas class I MHC molecules normally associate with peptides from endogenous proteins. We have studied the ability of Pseudomonas exotoxin A (PE) fusion proteins to deliver exogenously added antigen for presentation by both MHC class I and class II molecules. A MHC class II-restricted antigen was fused to PE; this molecule was processed in a manner typical for class II-associated antigens. However, a MHC class I-restricted peptide fused to PE was processed by a mechanism independent of proteasomes. Furthermore, we also found that the PE fusion protein was much more stable in normal human plasma than the corresponding synthetic peptide. We believe that effective delivery of an antigen to both the MHC class I and class II pathways, in addition to the increased resistance to proteolysis in plasma, will be important for immunization.  相似文献   

4.
T lymphocytes recognize peptide antigens presented by class I and class II molecules encoded by the major histocompatibility complex (MHC). Classical antigen-presentation studies showed that MHC class I molecules present peptides derived from proteins synthesized within the cell, whereas MHC class II molecules present exogenous proteins captured from the environment. Emerging evidence indicates, however, that dendritic cells have a specialized capacity to process exogenous antigens into the MHC class I pathway. This function, known as cross-presentation, provides the immune system with an important mechanism for generating immunity to viruses and tolerance to self.  相似文献   

5.
The binding of antigenic peptide to class II MHC is mediated by hydrogen bonds between the MHC and the peptide, by salt bridges, and by hydrophobic interactions. The latter are confined to a number of deeper pockets within the peptide binding groove, and peptide side chains that interact with these pockets are referred to as anchor residues. T cell recognition involves solvent-accessible peptide residues along with minor changes in MHC helical pitch induced by the anchor residues. In class I MHC there is an added level of epitope complexity that results from binding of longer peptides that bulge out into the solvent-accessible, T cell contact area. Unlike class I MHC, class II MHC does not bind peptides of discrete length, and the possibility of peptide bulging has not been clearly addressed. A peptide derived from position 24-37 of integrin beta(3) can either bind or not bind to the class II MHC molecule HLA DRB3*0101 based on a polymorphism at the P9 anchor. We show that the loss of binding can be compensated by changes at the P10 position. We propose that this could be an example of a class II peptide bulge. Although not as efficient as P9 anchoring, the use of P10 as an anchor adds another possible mechanism by which T cell epitopes can be generated in the class II presentation system.  相似文献   

6.
The adaptive immune response depends on the creation of suitable peptides from foreign antigens for display on MHC molecules to T lymphocytes. Similarly, MHC-restricted display of peptides derived from self proteins results in the elimination of many potentially autoreactive T cells. Different proteolytic systems are used to generate the peptides that are displayed as T cell epitopes on class I compared with class II MHC molecules. In the case of class II MHC molecules, the proteases that reside within the endosome/lysosome system of antigen-presenting cells are responsible; surprisingly, however, there are relatively few data on which enzymes are involved. Recently we have asked whether proteolysis is required simply in a generic sense, or whether the action of particular enzymes is needed to generate specific class II MHC-associated T cell epitopes. Using the recently identified mammalian asparagine endopeptidase as an example, we review recent evidence that individual enzymes can make clear and non-redundant contributions to MHC-restricted peptide display.  相似文献   

7.
To detect viral infections and tumors, CD8+ T lymphocytes monitor cells for the presence of antigenic peptides bound to MHC class I molecules. The majority of MHC class I-presented peptides are generated from the cleavage of cellular and viral proteins by the ubiquitin-proteasome pathway. Many of the oligopeptides produced by this process are too long to stably bind to MHC class I molecules and require further trimming for presentation. Leucine aminopeptidase (LAP) is an IFN-inducible cytosolic aminopeptidase that can trim precursor peptides to mature epitopes and has been thought to play an important role in Ag presentation. To examine the role of LAP in generating MHC class I peptides in vivo, we generated LAP-deficient mice and LAP-deficient cell lines. These mutant mice and cells are viable and grow normally. The trimming of peptides in LAP-deficient cells is not reduced under basal conditions or after stimulation with IFN. Similarly, there is no reduction in presentation of peptides from precursor or full-length Ag constructs or in the overall supply of peptides from cellular proteins to MHC class I molecules even after stimulation with IFN. After viral infection, LAP-deficient mice generate normal CTL responses to seven epitopes from three different viruses. These data demonstrate that LAP is not an essential enzyme for generating most MHC class I-presented peptides and reveal redundancy in the function of cellular aminopeptidases.  相似文献   

8.
Class II MHC proteins bind peptides and present them to CD4 (+) T cells as part of the immune system's surveillance of bodily tissues for foreign and pathogenic material. Antigen processing and presentation pathways have been characterized in detail in normal cells, but there is little known about the actual viral peptides that are presented to CD4 (+) T cells that signal infection. In this study, two-dimensional LC-MS/MS was used to identify vaccinia virus-derived peptides among the hundreds to thousands of peptide antigens bound to the human class II MHC protein HLA-DR1 on the surface of vaccinia virus-infected cells. The peptides, derived from the I6L, D6R, and A10L viral proteins, were 15 residues in length, bound efficiently to HLA-DR1 as synthetic peptides, and were recognized by vaccinia-specific CD4 (+) T cells obtained from an immunized donor.  相似文献   

9.
Members of the major histocompatibility complex (MHC) class I family of proteins are well known for their central role in the adaptive immune system, where they present self and non-self peptides for immune surveillance. Although the brain has been long considered immune privileged, in part because of an apparent lack of neuronal MHC class I, it has since been shown that MHC class I proteins are expressed by normal, uninfected neurons. Moreover, expression of MHC class I is unusually dynamic in the developing and adult brain, and MHC class I levels in neurons can be regulated by endogenous and exogenous electrical activity. Unexpectedly, several recent studies find that MHC class I is required for distinct activity-dependent events during brain development, adult plasticity, and in response to injury. Together, these studies indicate a novel role for MHC class I proteins in translating electrical activity into changes in synaptic strength and neuronal connectivity in vivo.  相似文献   

10.
MHC class I molecules present precisely cleaved peptides of intracellular proteins on the cell surface. For most antigenic precursors, presentation requires transport of peptide fragments into the ER, but the nature of the cytoplasmic peptides and their chaperones is obscure. By tracking proteolytic intermediates in living cells, we show that intracellular proteolysis yields a mixture of antigenic peptides containing only N-terminal flanking residues for ER transport. Some of these peptides were bound to the group II chaperonin TRiC and were protected from degradation. Destabilization of TRiC by RNA interference inhibited the expression of peptide-loaded MHC I molecules on the cell surface. Thus, the TRiC chaperonin serves a function in protecting proteolytic intermediates in the MHC I antigen processing pathway.  相似文献   

11.
The immune system surveys the organism for the presence of foreign or abnormal structures. An important role in the immune response is assumed by T lymphocytes that recognize foreign antigen while tolerating self-proteins. T lymphocytes can recognize only peptide fragments that are presented to them by molecules of the major histocompatibility complex (MHC). Antigen processing for presentation to T cells involves distinct cellular compartments where peptides and MHC molecules interact. Whereas class I MHC molecules (recognized by CD8+ cytotoxic T cells) acquire peptides in an early biosynthetic compartment, class II molecules (recognized by CD4+ helper T cells) acquire peptides most efficiently in an endocytic compartment. It has emerged recently that the class II processing compartment can be fed not only from the outside with exogenous antigen but also from endogenous sources, including membrane-associated and cytosolic proteins. The potential sources of proteins that can trigger a helper T cell response during viral infections and that can induce self-tolerance are thus much wider than previously anticipated.  相似文献   

12.
Peptides from extracellular proteins presented on MHC class II are mostly generated and loaded in endolysosomal compartments, but the major pathways responsible for loading peptides from APC-endogenous sources on MHC class II are as yet unclear. In this study, we show that MHC class II molecules present peptides from proteins such as OVA or conalbumin introduced into the cytoplasm by hyperosmotic pinosome lysis, with efficiencies comparable to their presentation via extracellular fluid-phase endocytosis. This cytosolic presentation pathway is sensitive to proteasomal inhibitors, whereas the presentation of exogenous Ags taken up by endocytosis is not. Inhibitors of nonproteasomal cytosolic proteases can also inhibit MHC class II-restricted presentation of cytosolically delivered protein, without inhibiting MHC class I-restricted presentation from the same protein. Cytosolic processing of a soluble fusion protein containing the peptide epitope I-Ealpha(52-68) yields an epitope that is similar to the one generated during constitutive presentation of I-Ealpha as an endogenous transmembrane protein, but is subtly different from the one generated in the exogenous pathway. Constitutive MHC class II-mediated presentation of the endogenous transmembrane protein I-Ealpha is also specifically inhibited over time by inhibitors of cytosolic proteolysis. Thus, Ag processing in the cytoplasm appears to be essential for the efficient presentation of endogenous proteins, even transmembrane ones, on MHC class II, and the proteolytic pathways involved may differ from those used for MHC class I-mediated presentation.  相似文献   

13.
The immune defences of our organism against pathogens and malignant transformation rely to a large extent on surveillance by cytotoxic T lymphocytes. This surveillance in turn depends on the antigen processing system, which provides peptide samples of the cellular protein composition to MHC (major histocompatibility complex) class I molecules displayed on the cell surface. To continuously and almost in real time provide a representative sample of the array of proteins synthesized by the cell, this system exploits some fundamental pathways of the cellular metabolism, with the help of several dedicated players acting exclusively in antigen processing. Thus, a key element in the turnover of cellular proteins, protein degradation by cytosolic proteasome complexes, is exploited as source of peptides, by recruiting a minor fraction of the produced peptides as ligands for MHC class I molecules. These peptides can be further processed and adapted to the precise binding requirements of allelic MHC class I molecules by enzymes in the cytosol and endoplasmic reticulum. The latter compartment is equipped with several dedicated players helping peptide assembly with class I molecules. These include the TAP (transporter associated with antigen processing) membrane transporter pumping peptides into the ER, and tapasin, a chaperone with a structure similar to MHC molecules that tethers class I molecules awaiting peptide loading to the TAP transporter, and mediates optimization of MHC class I ligand by a still somewhat mysterious mechanism. Additional "house-keeping" chaperones that are known to act in concert in ER quality control, assist and control correct folding, oxidation and assembly of MHC class I molecules. While this processing system handles exclusively endogenous cellular proteins in most cells, dendritic cells employ one or several special pathways to shuttle exogenous, internalized proteins into the system, in a process referred to as cross-presentation. Deciphering the cell biological mechanism creating the link between the endosomal and secretory pathways that enables cross-presentation is one of the challenges faced by contemporary research in the field of MHC class I antigen processing.  相似文献   

14.
Cytotoxic CD8(+) T lymphocytes kill infected cells that display major histocompatibility complex (MHC) class I molecules presenting peptides processed from pathogen proteins. In general, the peptides are proteolytically processed from newly made endogenous antigens in the cytosol and require translocation to the endoplasmic reticulum (ER) for MHC class I loading. This last task is performed by the transporters associated with antigen processing (TAP). Sampling of suspicious pathogen-derived proteins reaches beyond the cytosol, and MHC class I loading can occur in other secretory or endosomal compartments besides the ER. Peptides processed from exogenous antigens can also be presented by MHC class I molecules to CD8(+) T lymphocytes, in this case requiring delivery from the extracellular medium to the processing and MHC class I loading compartments. The endogenous or exogenous antigen can be processed before or after its transport to the site of MHC class I loading. Therefore, mechanisms that allow the full-length protein or processed peptides to cross several subcellular membranes are essential. This review deals with the different intracellular pathways that allow the traffic of antigens to compartments proficient in processing and loading of MHC class I molecules for presentation to CD8(+) T lymphocytes and highlights the need to molecularly identify the transporters involved.  相似文献   

15.
Class II major histocompatibility complex (MHC) proteins are essential for normal immune system function but also drive many autoimmune responses. They bind peptide antigens in endosomes and present them on the cell surface for recognition by CD4(+) T cells. A small molecule could potentially block an autoimmune response by disrupting MHC-peptide interactions, but this has proven difficult because peptides bind tightly and dissociate slowly from MHC proteins. Using a high-throughput screening assay we discovered a class of noble metal complexes that strip peptides from human class II MHC proteins by an allosteric mechanism. Biochemical experiments indicate the metal-bound MHC protein adopts a 'peptide-empty' conformation that resembles the transition state of peptide loading. Furthermore, these metal inhibitors block the ability of antigen-presenting cells to activate T cells. This previously unknown allosteric mechanism may help resolve how gold(I) drugs affect the progress of rheumatoid arthritis and may provide a basis for developing a new class of anti-autoimmune drugs.  相似文献   

16.

Background

Presentation of peptides on Major Histocompatibility Complex (MHC) molecules is the cornerstone in immune system activation and increased knowledge of the characteristics of MHC ligands and their source proteins is highly desirable.

Methodology/Principal Finding

In the present large-scale study, we used a large data set of proteins containing experimentally identified MHC class I or II ligands and examined the proteins according to their expression profiles at the mRNA level and their Gene Ontology (GO) classification within the cellular component ontology. Proteins encoded by highly abundant mRNA were found to be much more likely to be the source of MHC ligands. Of the 2.5% most abundant mRNAs as much as 41% of the proteins encoded by these mRNAs contained MHC class I ligands. For proteins containing MHC class II ligands, the corresponding percentage was 11%. Furthermore, we found that most proteins containing MHC class I ligands were localised to the intracellular parts of the cell including the cytoplasm and nucleus. MHC class II ligand donors were, on the other hand, mostly membrane proteins.

Conclusions/Significance

The results contribute to the ongoing debate concerning the nature of MHC ligand-containing proteins and can be used to extend the existing methods for MHC ligand predictions by including the source protein''s localisation and expression profile. Improving the current methods is important in the growing quest for epitopes that can be used for vaccine or diagnostic purposes, especially when it comes to large DNA viruses and cancer.  相似文献   

17.
Human cytomegalovirus (HCMV) glycoprotein US2 causes degradation of major histocompatibility complex (MHC) class I heavy-chain (HC), class II DR-alpha and DM-alpha proteins, and HFE, a nonclassical MHC protein. In US2-expressing cells, MHC proteins present in the endoplasmic reticulum (ER) are degraded by cytosolic proteasomes. It appears that US2 binding triggers a normal cellular pathway by which misfolded or aberrant proteins are translocated from the ER to cytoplasmic proteasomes. To better understand how US2 binds MHC proteins and causes their degradation, we constructed a panel of US2 mutants. Mutants truncated from the N terminus as far as residue 40 or from the C terminus to amino acid 140 could bind to class I and class II proteins. Nevertheless, mutants lacking just the cytosolic tail (residues 187 to 199) were unable to cause degradation of both class I and II proteins. Chimeric proteins were constructed in which US2 sequences were replaced with homologous sequences from US3, an HCMV glycoprotein that can also bind to class I and II proteins. One of these US2/US3 chimeras bound to class II but not to class I, and a second bound class I HC better than wild-type US2. Therefore, US2 residues involved in the binding to MHC class I differ subtly from those involved in binding to class II proteins. Moreover, our results demonstrate that the binding of US2 to class I and II proteins is not sufficient to cause degradation of MHC proteins. The cytosolic tail of US2 and certain US2 lumenal sequences, which are not involved in binding to MHC proteins, are required for degradation. Our results are consistent with the hypothesis that US2 couples MHC proteins to components of the ER degradation pathway, enormously increasing the rate of degradation of MHC proteins.  相似文献   

18.
Peptides associated with class II MHC molecules are of variable length because in contrast to peptides associated with class I MHC molecules, their amino and C termini are not constrained by the structure of the peptide interaction with the binding site. The proteolytic processing events that generate these peptides are still not well understood. To address this question, peptides extracted from HLA-DR*0401 were analyzed using two types of mass spectrometry instrumentation. This enabled identification of >700 candidate peptides in a single analysis and provided relative abundance information on 142 peptides contained in 11 nested sets of 3-36 members each. Peptides of 12 residues or less occurred only at low abundance, despite the fact that they were predicted to fully occupy the HLA-DR*0401 molecule in a single register. Conversely, the relative abundance of longer species suggested that proteolytic events occurring after MHC binding determine the final structure of most class II-associated peptides. Our data suggest that C-terminal residues of these peptides reflect the action of peptidases that cleave at preferred amino acids, while amino termini appear to be determined more by proximity to the class II MHC binding site. Thus, the analysis of abundance information for class II-associated peptides comprising nested sets has offered new insights into proteolytic processing of MHC class II-associated peptides.  相似文献   

19.
Molecules encoded by the major histocompatibility complex (MHC) are polymorphic integral membrane proteins adapted to the presentation of peptide fragments of foreign antigens to antigen-specific T-cells. The diversity of infectious agents to which an immune response must be mounted poses a unique problem for receptor–ligand interactions; how can proteins whose polymorphism is necessarily limited bind an array of peptides almost infinite in its complexity? Both MHC class I and class II determinants have achieved this goal by harnessing a limited number of peptide side chains to anchor the epitope in place while exploiting conserved features of peptide structure, independent of their primary sequence. While class I molecules interact predominantly with the N- and C-termini of peptides, class II determinants form an extensive hydrogen bonding network along the length of the peptide backbone. Such a strategy ensures high-affinity binding, while selectively exposing the unique features of each ligand for recognition by the T-cell receptor. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
T lymphocytes usually recognize endogenously encoded Ag in the context of MHC class I molecules, whereas exogenous Ag is usually presented by MHC class II molecules. In vitro studies in model systems suggest that presentation of endogenous Ag by class II molecules is inhibited by the association of class II with its invariant chain (Ii). In the present study we test this hypothesis in an in vivo system in which endogenously encoded tumor peptides are presented by tumor cell MHC class II molecules. In this system, transfection of syngeneic MHC class II genes (Aak and Abk) into a highly malignant, Ii negative, mouse tumor (SaI sarcoma) produces an immunogenic tumor (SaI/Ak) that is rejected by the autologous host. The class II+ transfectants also effectively immunize autologous A/J mice against a subsequent challenge of wild-type class II- tumor cells. We have hypothesized that the SaI/Ak transfectants induce protective immunity because they function as APC for endogenously synthesized tumor peptides, and thereby stimulate tumor-specific Th cells, by-passing the need for professional APC. To test the role of Ii as an inhibitor of presentation of endogenous peptides, SaI/Ak tumor cells were supertransfected with Ii gene (SaI/Ak/Ii cells), and the tumorigenicity of the resulting cells determined. Nine SaI/Ak/Ii clones were tested, and their malignancy compared with that of SaI/Ak and SaI cells. Seven of the nine class II+/Ii+ tumor cells are more malignant than class II+/Ii- tumor cells in autologous A/J mice. Expression of Ii therefore restores the malignant phenotype, presumably by preventing presentation of endogenously synthesized tumor peptides. Ii therefore regulates Ag presentation and can be a critical parameter for in vivo tumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号