首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.  相似文献   

2.
We studied the biochemical degradation of organic matter comprising marine diatom, land grass, and salt marsh plant in estuarine ecosystems in two laboratory microcosms consisting of estuarine sediments and coastal seawater. The materials were incubated separately and together under controlled oxic and anoxic conditions to test effects of co-metabolism and redox on overall degradation of organic matter. We followed variations of bulk parameters [total organic carbon (TOC), total nitrogen (TN), C/N ratio, δ13CTOC, and δ15NTN], fatty acid concentrations, and compound-specific δ13C values over 3 months. Coexistence of marine diatom (relatively labile) with land grass/salt marsh plant (relatively refractory) in the microcosms yielded a negative co-metabolism effect (retardation rather than acceleration) on the overall degradation of organic matter. The ratios of oxic to anoxic degradation rate constants (k ox/k an) of TOC and most fatty acids were in a range of 1.1–1.7, implying that redox conditions per se had a limited influence on degradation of fresh organic materials in estuarine ecosystems. Variations of two bacteria-specific fatty acids (iso- and anteiso-15:0) and their δ13C values indicated that bacterial metabolism could use organic carbon (OC) from any available material when only one single-source material was dominant in the ecosystems. However, bacteria probably utilized OC preferentially from labile marine diatom when multiple-source materials were almost equally present in the ecosystems.  相似文献   

3.
Insight into the initial phase of aggregate formation was provided by comparison between bacterial communities from freshly formed aggregates dominated by the epipelic diatom Cylindrotheca closterium and associated water masses. This study was performed from 2000 to 2006 in the northern Adriatic. The chemotaxonomic structures and physiological conditions were inferred from the fatty acid profiles of the cultured bacterial communities of all implicated components, fresh aggregates, their adjacent waters, oligotrophic high-salinity waters and halocline waters. The results showed similarity between bacterial communities of fresh aggregates and oligotrophic high-salinity water, suggesting their common origin and involvement in the formation of aggregates. In contrast, the origin of the water adjacent to aggregates was different from that of the other components but was similar to the halocline layer and was likely derived from northern Adriatic waters. The presence and activity of heterotrophic bacteria belonging to Alteromonadaceae, which are regularly observed on fresh aggregates, suggest that the early phase of aggregate formation corresponds to an abrupt change of environmental conditions due to the mixing of central and northern Adriatic waters. The initial colonisation of fresh mucilage ascribes to Alteromonas an important ecological function in aggregate community development related to the succession of phytoplankton and heterotrophic bacteria.  相似文献   

4.
Fatty acid composition of phytoplankton photosynthetic productswas determined by a 13C tracer and gas chromatography-mass spectrometry(13C-GC-MS) method from August 1985 to June 1986 in Lake Biwa,Japan. The total fatty acid production rate varied from 2.8to 10.9 µg C l–1 day–1 at the water surfaceand accounted for 9.1–30% of photosynthetic productionof particulate organic carbon. A high contribution of fattyacid to the particulate organic carbon production rate was noticedduring winter time, and an increase in the fatty acid contributionresulted in an increase in the C/N value in the photosyntheticproducts. The fatty acid composition varied throughout the year,mainly depending on the seasonal change in the dominant phytoplanktonspecies. The contribution of polyunsaturated fatty acids tototal fatty acids was low during the summer period, probablydue to nitrogen limitation of phytoplankton growth.  相似文献   

5.
In the autumn of 2007, marine mucilage caused by the diatom Coscinodiscus granii occurred in the central area of Ariake Sound, Japan, and resulted in damage to fishery. To elucidate the mechanism underlying the outbreak of marine mucilage, we examined the effect of temperature on cell growth and production of transparent exopolymer particles (TEPs) in a culture of this species. Growth and TEP production of C. granii are influenced by temperature. The maximum growth rate (1.63 divisions day−1) and cell yield (1,280 cells mL−1) at all temperatures were obtained at 30°C. Optimal growth rates (>1.15 divisions day−1: ca. 70% of maximum) and cell yield (>900 cells mL−1: ca. 70% of maximum) were observed at temperatures of 25–30°C. TEP production by C. granii depended on whether volume- or cell-related values were considered. The maximum volume-normalized increase rates and concentrations of TEP at all temperatures were observed at 25°C. However, when production rates and concentrations of TEP were normalized to cell numbers, optimal values were measured at 10–15°C. In Ariake Sound, when marine mucilage caused by C. granii occurred, the temperature ranged from 25.0 to 25.4°C. This suggests that growth conditions of C. granii are important factors for production of marine mucilage.  相似文献   

6.
Phytoplankton data obtained during six summer Polish expeditionsto the Antarctic Peninsula area, are compared with concurrentlyrecorded data on water column stabilities and krill abundance.The results show that flagellates (1.5–20 µm) arenumerically dominant over diatoms in the areas of deep verticalmixing and/or extensive krill concentrations. Of 102 stationsdominated by flagellates, 85 (83.3%) are located in a well mixedwater column (>100 m) and correspond to a mean krill densityof 15–346 t Nm–2. In the same areas, estimated flagellatecarbon biomass exceeds diatom carbon. On the other hand, ofthe 40 stations dominated by diatoms, 36 (90%) are located inareas of increased water column stability (upper mixed layerof 10–50 m) and correspond to a low mean krill biomassof 0.34–4.6 t Nm–2. Positive correlations of flagellateto diatom (F:D) cell number ratios with the depth of the uppermixed layer suggest light limitation of diatom growth and anincreased sinking rate of diatoms relative to flagellates inthe areas of deep vertical mixing. The relationship of the F:Dratio with krill abundance suggests that krill prefer feedingon diatoms and are less efficient in grazing particles of thesize of microflagellates (<20 µm). Flagellates exceeddiatoms in an unstable water column when the phytoplankton populationsare low; both algal groups increase in numbers with growingstability. The results provide field evidence that deep verticalmixing and krill grazing create conditions for the dominanceof flagellates over diatoms. Both factors acting together arelikely to suppress diatom blooms in the Antarctic.  相似文献   

7.
Herbivory of Mnemiopsis leidyi and its interactions with phytoplanktonand non-gelatinous zooplankton were examined in small-scalemicrocosm experiments. Clearance rates for M. leidyi incubatedwith phytoplankton were generally negative, but ranged up to4.5 1 ctenophore–1 day–1 when the large (80 µmø) diatom Ditylum brightwelli was offered as a food source.These highest ingestion rates would provide Mnemiopsis withonly 21 % of its daily carbon requirements for respiration.Mean shrinkage of M. leidyi was 8.2–51% when incubatedwith phytoplankton. Although M. leidyi neither fed activelyon phytoplankton, nor satisfied its nutritional needs on sucha diet, the chain-forming diatom Skeletonema costatum becameentangled in mucus strands and balls produced by M. leidyi inthe absence of zooplankton. Attachment onto mucus occurred atphytoplankton concentrations commonly observed in NarragansettBay and may be important in the formation of "marine snow" duringsummer M. leidyi pulses; phytoplankton sinking rate and the"package size" available to herbivores would also be affected.The experiments support our previous hypothesis based on fieldobservations in Narragansett Bay that M. leidyi indirectly regulatesphytoplankton abundance there during the summer bloom as a consequenceof predation on zooplankton. The extent to which M. leidyi influencedphytoplankton dynamics in the microcosms was dependent on therelative abundance and physiological state of the three trophiclevels. A food web diagram for M. leidyi is presented.  相似文献   

8.
The seasonal development of bacteria was studied in the hypertrophiccoastal lagoon Ciénaga Grande de Santa Marta (Caribbeancoast of Colombia). This large but only 1.5 m deep lagoon issubject to strong seasonal variations of salinity from almostfully marine (April/May) to brackish conditions in October/November.Chlorophyll ranged from 6 to 182 µg L–1, and grossprimary production amounted to 1690 g C m–2 per year.Total bacterial number (TBN) ranged from 6.5 to 90.5 x 109 cellsL–1 and bacterial biomass (BBM) from 77 to 1542 µgC L–1, which are among the highest ever reported for naturalcoastal waters. Neither TBN nor BBM varied significantly withsalinity, phytoplankton or seston concentrations. Only the bacterialmean cell volume showed a significant relation to salinity,being highest (0.066 µm3) during the period of increasingand lowest (0.032 µm3) during decreasing salinity. Bacterialprotein accounted for 24% (19–26%) and phytoplankton proteinfor 57% (53–71%) of total seston protein. The ratio (annualmean) of bacterial carbon to phytoplankton carbon was 0.44 (range0.04–1.43). At low phytoplankton abundance [chlorophylla (Chl a) < 25 µg L–1], bacterial carbon wasalmost equal to phytoplankton biomass (i.e. the mean ratio was1.04). In contrast, at Chl a > 100 µg L–1, BBMwas low compared to phytoplankton biomass (the mean ratio was0.16). In general, BBM varied less than phytoplankton biomass.Most probably, the missing correlation between bacterial andphytoplankton variables was due to (i) organic material partlyderived from allochthonous sources serving as food resourcefor bacteria and (ii) a strong resuspension of bacteria fromthe sediment caused by frequent wind-induced mixing of the veryshallow lagoon.  相似文献   

9.
During the spring of 1994, we determined the factors responsiblefor the decline of the seasonal diatom bloom in the Gullmarfjord, on the west coast of Sweden. Four species constituted>75% of the biomass—Detonula confervacea, Chaetocerosdiadema, Skeletonema costatum and Thalassiosira nordenskioeldii—reachingconcentrations of 4900, 350, 8200 and 270 cells ml–1,respectively. Growth of phytoplankton was exponential (growthrate = 0.12 day–1) from 3 to 21 March, after which a galewith winds >15 m s–1 caused massive aggregation. Amaximum of 130 p.p.m. (v/v) of marine snow aggregates was observedby in situ video at the peak of the bloom. Critical concentrations(Jackson, Deep-Sea Res., 37, 1197–1211, 1990) were similarto observed showing that coagulation theory could explain thesudden decline of the bloom. The heterotrophic dinoflagellateGyrodinium cf. spirale increased exponentially after the peakof the bloom with maximum (temperature-adjusted) growth rates.After the rapid aggregation and sedimentation of the bloom,they were able to control any further growth of diatoms. Nitrateand silicate were never depleted, but phosphate may have beenlimiting by the end of the study period. We conclude that massaggregation during a gale marked the end of the bloom, and thatintense grazing by heterotrophic dinoflagellates prevented anysubsequent increase of diatoms.  相似文献   

10.
Parameters characterizing bacterial biomass and metabolic activityare compared with phytoplankton biomass and daily primary productionrates throughout the year. Between late March (before the onsetof the phytoplankton spring bloom) and mid-July (diatom maximum),bacterial degradation of organic matter was more closely relatedto phytoplankton productivity than during the rest of the year.Bacterial production (as estimated by amino acid net uptake)was significantly correlated with concentrations of chlorophyll and pheopigments. However, bacterial production was correlatedless closely with primary production and only weakly with bacterialbiomass. Bacterial biomass was also only weakly correlated withprimary production but significantly with pheopigments. Numbersof active bacteria as estimated by autoradiography covariedclosely with bacterial production and cell numbers. Wheneverbacterial production was low, enhanced proportions of aminoacids were respired. Oxygen consumption measurements showedthat the size fraction <3 µm contributed 25–75%to total respiration. On average, bacterial biomass comprised11 % of paniculate organic matter and roughly equalled phytoplanktonbiomass. During the growing season, bacterial production inthe uppermost 20 m comprised about 20% of phytoplankton productionwith large seasonal fluctuations. A tentative carbon budgetof the euphotic zone including primary production, zooplanktongrazing, bacterial production and sedimentation is presented. 1Present address: Institute of Marine Resources A-018, ScrippsInstitution of Oceanography, University of California, San Diego,La Jolla, CA 92093, USA  相似文献   

11.
Marine snow aggregates are microbial hotspots that support high bacterial abundance and activities. We conducted laboratory experiments to compare cell-specific bacterial protein production (BPP) and protease activity between free-living and attached bacteria. Natural bacterial assemblages attached to model aggregates (agar spheres) had threefold higher BPP and two orders of magnitude higher protease activity than their free-living counterpart. These observations could be explained by preferential colonization of the agar spheres by bacteria with inherently higher metabolic activity and/or individual bacteria increasing their metabolism upon attachment to surfaces. In subsequent experiments, we used four strains of marine snow bacteria isolates to test the hypothesis that bacteria could up- and down-regulate their metabolism while on and off an aggregate. The protease activity of attached bacteria was 10-20 times higher than that of free-living bacteria, indicating that the individual strains could increase their protease activity within a short time (2 h) upon attachment to surfaces. Agar spheres with embedded diatom cells were colonized faster than plain agar spheres and the attached bacteria were clustered around the agar-embedded diatom cells, indicating a chemosensing response. Increased protease activity and BPP allow attached bacteria to quickly exploit aggregate resources upon attachment, which may accelerate remineralization of marine snow and reduce the downward carbon fluxes.  相似文献   

12.
Despite the potential importance of zooplankton in degradationof marine snow, the association of colonising zooplankton withdiscarded appendicularian houses has not been investigated innorthern areas. We sampled the vertical distributions of appendicularians,houses and potential zooplankton colonisers at two stationsin the central North Sea during late summer. In addition, grazingexperiments were performed with the copepod Microsetella norvegica,which was assumed to be the main contributor to house degradation.The results were used in (i) inverse modelling, to estimatethe factors which were significant in shaping the vertical distributionof houses and (ii) calculations to estimate potential housedegradation rates. M. Norvegica was able to feed on appendicularianhouses, with feeding rates up to 0.42 g C (g C)–1 day–1(0.14 µg C ind.–1 day–1). The model resultssuggested that the vertical distribution of houses was shapedby sinking of houses, bacterial degradation and feeding of M.norvegica and invertebrate larvae. The estimated community degradationrate by M. norvegica was low, whereas invertebrate larvae haddegradation rates close to bacterial degradation. We concludethat at the typical concentrations of M. norvegica in the NorthSea (104 ind. m–2), its role in marine snow degradationis likely to be small. Degradation by other zooplankton groups,such as invertebrate larvae, can, however, be substantial.  相似文献   

13.
Suspended particulate organic matter (POM) is a primary food source for benthic and pelagic consumers in aquatic and marine ecosystems. POM is potentially composed of many sources including phytoplankton, bacteria, zooplankton and macrophyte (seaweed and seagrass) and terrestrial detritus. The relative importance of these sources to POM consumers is debated, in large part due to differing interpretations of stable isotope and fatty acid biomarkers. We investigated POM composition in a nearshore marine ecosystem using multiple methods including visual quantification of living and detrital components, multiple stable isotope (MSI) and fatty acid (FA) analyses. Sampling was conducted at multiple temporal and spatial scales to 1) determine the range of variability in POM biomarkers, 2) quantitatively evaluate δ13C, δ15N, δ34S and FA biomarkers with proportional abundance of putative sources and 3) determine the availability of phytoplankton, macrophytes and terrestrial carbon in nearshore POM. Variation of total FA concentration and proportions, and δ13C and δ34S were strongly correlated to phytoplankton abundance, at tidal and seasonal timescales. Using multivariate multiple regressions, MSI and FA explained 59.6% and 89.7% of the variation in POM composition, respectively. As phytoplankton abundance increased, total FA concentration increased concurrent to δ13C and δ34S enrichment. In high detritus samples, bacterial FA and saturated FA were proportionally higher, corresponding to depletion of δ13C and δ34S and enrichment of δ15N. We identify MSI and FA biomarkers that are good predictors of diatom, dinoflagellate and detrital contributions to the POM. The results of this multi‐scale study show that POM composition is highly dynamic and largely driven by phytoplankton abundance, with minor contributions from terrestrial or macrophyte subsidies. This quantitative approach provides novel and critical empirical information linking POM compositional dynamics to specific biomarkers that are commonly used for tracking energy subsidies and biogeochemical cycling in aquatic ecosystems.  相似文献   

14.
Sinking losses of phytoplankton in closed limnetic systems   总被引:8,自引:0,他引:8  
Specific algal recoveries from sediment traps of two differentdesigns and from mud surface deposits of large experimentalenclosures (Lund Tubes) were monitored during 1978 and are analyzedin relation to the vertical and temporal distribution of tendominant phytoplankton populations. Sedimentation accounts fordiffering proportions of the total loss of biomass for differentalgae: between 28 and 100% of diatoms; 15–95% of Eudorina;<4% of populations of small algae (spp. ofAnkyra, Chromulina,Cryptomonas). Rates of diatom loss are also derived from thecomparison of net rates of change (kn) and the silica uptake-derivedgrowth rate (k1); intrinsic sinking behaviour may be specificallyregulated in relation to growth conditions. Implications inthe calculation of sedimentary losses and their impact uponthe seasonal periodicity of phytoplankton are briefly discussed.  相似文献   

15.
The role of iron and light in controlling photosynthate productionand allocation in phytoplankton populations of the Atlanticsector of the Southern Ocean was investigated in April–May1999. The 14C incorporation into five biochemical pools (glucan,amino acids, proteins, lipids and polysaccharides) was measuredduring iron/light perturbation experiments. The diurnal Chla-specific rates of carbon incorporation into these pools didnot change in response to iron addition, yet were decreasedat 20 µmol photons m–2 s–1, an irradiancecomparable with the one at 20–45 m in situ depth. Thissuggests that the low phytoplankton biomass encountered (0.1–0.6µg Chl a L–1) was mainly caused by light limitationin the deep wind mixed layer (>40 m). Regional differencesin Chl a-specific carbon incorporation rates were not foundin spite of differences in phytoplankton species composition:at the Antarctic Polar Front, biomass was dominated by a diatompopulation of Fragilariopsis kerguelensis, whereas smaller cells,including chrysophytes, were relatively more abundant in theAntarctic Circumpolar Current beyond the influence of frontalsystems. Because mixing was often in excess of 100 m in thelatter region, diatom cells may have been unable to fulfil theircharacteristically high Fe demand at low average light conditions,and thus became co-limited by both resources. Using a modelthat describes the 14C incorporation, the consistency was shownbetween the dynamics in the glucan pool in the field experimentsand in laboratory experiments with an Antarctic diatom, Chaetocerosbrevis. The glucan respiration rate was almost twice as highduring the dark phase as during the light phase, which is consistentwith the role of glucan as a reserve supplying energy and carbonskeletons for continued protein synthesis during the night.  相似文献   

16.
The parasitoid nanoflagellate (PNF) Pirsonia diadema is hostspecific for the marine centric diatom Coscinodiscus spp. Experimentsshowed that flagellates significantly prefer C. wailesii overC.granii as host species (interspecific selectivity). This preferencewas independent of light conditions (dark, irradiance of 10and 70 µmol m–2 s–1) and temperature (10 and15C). Among unicellular host diatoms, the infection behaviourwas selective for individual cells: already infected C.graniicells were more attractive for further flagellate attachmentthan non-infected cells (intraspecific selectivity). Individualcells (  相似文献   

17.
This study is part of an investigation into the occurrence ofplant growth substances in marine unicellular algae. Auxinsand gibberellins have previously been detected. This paper reportsthe occurrence of phytokinins in algae, using the radish leaftest. The technique of the test is described and a few modificationsexamined. Radish leaves were shown to be more responsive thanswede leaves. Some requirement for a minimum temperature below7? C during the growing period of the plants appeared to bea factor for maximum response. The size and age of the leafwere shown to influence kinetin activity. Chemicals tested includedbenzyl adenine, a 9-substituted benzyl adenine, and kinetin.Kinetin showed lower activity than the benzyl adenines. Kinetinkept in the solid state at –20? C for 2 years was as activeas freshly prepared kinetin. Gibberellic acid (GA2) at 10–5g/ml sometimes showed activity equivalent to 10–5 g/mlkinetin. Indole-3-yl acetic acid at concentrations of 10–4to 10–6 g/ml was inactive. The radish leaf test was successfully used to demonstrate phytokininsin extracts of two species of unicellular marine algae, andin marine phytoplankton samples. Amounts found were within therange 0.1 to 1.0 mg/kg with one exception of 10 mg/kg. Phytokininactivity in these extracts decreased over a period of a fewweeks when stored at –20? C.  相似文献   

18.
Influence of maize root mucilage on soil aggregate stability   总被引:9,自引:0,他引:9  
This study was undertaken to determine the effects of root exudates on soil aggregate stability. Root mucilage was collected from two-month old maize plants (Zea mays L.) Mucilage and glucose solutions were added at a rate of 2.45 g C kg−1 dry soil to silty clay and silt loam soils. Amended soils, placed in serum flasks, were incubated for 42 d with a drying-wetting cycle after 21 d. Evolved CO2 was measured periodically as well as the water-stable aggregates and soluble sugar and polysaccharide content of the soil. In mucilage-amended soils CO2 evolution started with a lag phase of 2–3 days, which was not observed in glucose-amended soils. There was then a sharp increase in evolved CO2 up to day 7. During the second incubation period there were only small differences in evolved C between treatments. Incorporation of mucilage in both soils resulted in a spectacular and immediate increase in soil aggregate stability. Thereafter, the percent of water-stable aggregates quickly decreased parallel to microbial degradation. On completion of the incubation, aggregate stability in the silty clay soil was still significantly higher in the presence of mucilage than in the control. This work supports the assumption that freshly released mucilage is able to stick very rapidly to soil particles and may protect the newly formed aggregates against water destruction. On the silty clay, microbial activity contributes to a stabilization of these established organo-mineral bounds.  相似文献   

19.
Particulate material recovered over an 18-month period from sediment traps deployed at a shallow-water nearshore Antarctic site was analysed for photosynthetic pigments, aliphatic hydrocarbons and fatty acids. All components showed a distinct seasonal variation, with high recovery rates during the summer open-water phytoplankton bloom and low rates under winter fast ice. The amount of trapped material differed between the two summers, indicating inter-annual variability of vertical flux associated with differences in the intensity of the summer phytoplankton bloom. Particulate material trapped in summer was dominated by that which originated in diatoms. High recoveries of chlorophyll a, fucoxanthin, n-C21:6 hydrocarbon, 20:5(n-3) fatty acid and shorter chain (C15–C24) aliphatic hydrocarbons all pointed to a significant summer flux of ungrazed diatoms. There were, however, also signals of zooplankton grazing activity (notably pyrophaeophorbide a), and the presence of C18:4(n-3) and C22:6(n-3) fatty acids suggested a small flux of material from flagellates and other sources. Longer chain n-alkanes (C25–C34) indicative of nanoplankton were detected all year, but there was no significant deposition of zooplankton material in any sample. The major recovery rate of photosynthetic pigments was in late summer (February to April), and the major grazing signal occurred after the peak of the summer diatom bloom. Most of the diatom bloom appeared to settle out from the water column without being grazed. The major seasonal contrast in the biochemistry of the trapped material was the dominance of the diatom signature in summer, and in winter the predominance (but at much lower recovery rates) of material from nanoplankton. Received: 2 March 1998 / Accepted: 12 June 1998  相似文献   

20.
The effect of the substituted pyridazinone, 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone(Sandoz 9785), on fatty acid synthesis in two photosyntheticspecies (Chroomonas salina and Nannochloropsis oculata) andone non-photosynthetic species (Crypthecodiniun cohnii) of marinemicroalgae were examined. Effects were more obvious in C. salinathan in C. cohnii or N. oculata. In C. cohnii the relative distributionamongst polyunsaturated fatty acids (PUFA) of radioactivityincorporated from 14C-acetate was not influenced by the herbicideto any great extent and no major changes in the fatty acid compositionof lipid fractions were observed. In C. salina, Sandoz 9785reduced the proportions of radioactivity recovered in 20: 5(n–3) and 22: 6 (n–3) of the phospholipid fraction.The distribution pattern of radioactivity in the fatty acidsof monogalactosyldiacylglycerol (MGDG) in this species was notgreatly affected by the herbicide whereas its presence significantlyreduced the proportions recovered in 18: 4 and 20: 1 in digalactosyldiacylglycerol(DGDG). The level of 20: 5 (n–3) in DGDG of C. salinawas increased from 4.0 to 19.8% by growing the algae in thepresence of Sandoz 9785. The only notable effect of the herbicideon the synthesis of PUFA in N. oculata was a reduction from18.3% to 11.3% of the proportion of radioactivity recoveredin 20: 5 in phospholipids. The herbicide had no effect on thedistribution of radioactivity in PUFA of galactolipids or onthe fatty acid composition of lipid fractions. The results arediscussed in relation to the potential role of galactolipidsand phospholipids as substrates for desaturations involved inthe formation of long chain PUFA in marine microalgae. Key words: Microalgae, herbicide, fatty acids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号