首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schofield CM  Trudell JR  Harrison NL 《Biochemistry》2004,43(31):10058-10063
The glycine receptor enables the generation of inhibitory postsynaptic currents at synapses via neurotransmitter-dependent activation. These receptors belong to the ligand-gated ion channel gene superfamily, in which all members are comprised of five subunits, each of which possesses a signature 13-residue disulfide loop (Cys loop) in the extracellular domain. In this study, we used alanine-scanning mutagenesis of the residues between C138 and C152 of the Cys loop of the glycine receptor alpha1 subunit to identify residues critical for receptor activation and allosteric modulation. Mutation of L142, F145, or P146 to alanine produced decreases in the potency, maximal amplitude, and Hill coefficient for currents elicited by glycine and impaired receptor activation by the agonist taurine. These residues, along with D148, are positionally conserved in the family of LGIC subunits. Mutation at several other positions had little or no effect. The inhaled anesthetics halothane and isoflurane potentiate submaximal agonist responses at wild-type receptors, via an allosteric site. The mutations L142A, F145A, P146A, and D148A abolished positive modulation by these anesthetics, in some cases revealing a small inhibitory effect. A molecular model of the glycine receptor alpha1 subunit suggests that the Cys loop is positioned in a region of the receptor at the interface between the extracellular and transmembrane domains and that the critical functional residues identified here lie along the face of a predominantly hydrophobic surface. The present data implicate the Cys loop as an important functional moiety in the process of glycine receptor activation and allosteric regulation by anesthetics.  相似文献   

2.
The divalent cation Zn(2+) is a potent potentiator at the strychnine-sensitive glycine receptor (GlyR). This occurs at nanomolar concentrations, which are the predicted endogenous levels of extracellular neuronal Zn(2+). Using structural modeling and functional mutagenesis, we have identified the molecular basis for the elusive Zn(2+) potentiation site on GlyRs and account for the differential sensitivity of GlyR alpha(1) and GlyR alpha(2) to Zn(2+) potentiation. In addition, juxtaposed to this Zn(2+) site, which is located externally on the N-terminal domain of the alpha subunit, another residue was identified in the nearby Cys loop, a region that is critical for receptor gating in all Cys loop ligand-gated ion channels. This residue acted as a key control element in the allosteric transduction pathway for Zn(2+) potentiation, enabling either potentiation or overt inhibition of receptor activation depending upon the moiety resident at this location. Overall, we propose that Zn(2+) binds to a site on the extracellular outer face of the GlyR alpha subunit and exerts its positive allosteric effect via an interaction with the Cys loop to increase the efficacy of glycine receptor gating.  相似文献   

3.
In the Cys loop superfamily of ligand-gated ion channels, a global conformational change, initiated by agonist binding, results in channel opening and the passage of ions across the cell membrane. The detailed mechanism of channel gating is a subject that has lent itself to both structural and electrophysiological studies. Here we defined a gating interface that incorporates elements from the ligand binding domain and transmembrane domain previously reported as integral to proper channel gating. An overall analysis of charged residues within the gating interface across the entire superfamily showed a conserved charging pattern, although no specific interacting ion pairs were conserved. We utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study extensively the gating interface of the mouse muscle nicotinic acetylcholine receptor. We found that charge reversal, charge neutralization, and charge introduction at the gating interface are often well tolerated. Furthermore, based on our data and a reexamination of previously reported data on gamma-aminobutyric acid, type A, and glycine receptors, we concluded that the overall charging pattern of the gating interface, and not any specific pairwise electrostatic interactions, controls the gating process in the Cys loop superfamily.  相似文献   

4.
The bacterial mechanosensitive channel MscS protects the bacteria from rupture on hypoosmotic shock. MscS is composed of a transmembrane domain with an ion permeation pore and a large cytoplasmic vestibule that undergoes significant conformational changes on gating. In this study, we investigated whether specific residues in the transmembrane and cytoplasmic domains of MscS influence each other during gating. When Asp-62, a negatively charged residue located in the loop that connects the first and second transmembrane helices, was replaced with either a neutral (Cys or Asn) or basic (Arg) amino acid, increases in both the gating threshold and inactivation rate were observed. Similar effects were observed after neutralization or reversal of the charge of either Arg-128 or Arg-131, which are both located near Asp-62 on the upper surface of the cytoplasmic domain. Interestingly, the effects of replacing Asp-62 with arginine were complemented by reversing the charge of Arg-131. Complementation was not observed after simultaneous neutralization of the charge of these residues. These findings suggest that the cytoplasmic domain of MscS affects both the mechanosensitive gating and the channel inactivation rate through the electrostatic interaction between Asp-62 and Arg-131.  相似文献   

5.
The glycine receptor is a member of the ligand-gated ion channel receptor superfamily that mediates fast synaptic transmission in the brainstem and spinal cord. Following ligand binding, the receptor undergoes a conformational change that is conveyed to the transmembrane regions of the receptor resulting in the opening of the channel pore. Using the acetylcholine-binding protein structure as a template, we modeled the extracellular domain of the glycine receptor alpha1-subunit and identified the location of charged residues within loops 2 and 7 (the conserved Cys-loop). These loops have been postulated to interact with the M2-M3 linker region between the transmembrane domains 2 and 3 as part of the receptor activation mechanism. Charged residues were substituted with cysteine, resulting in a shift in the concentration-response curves to the right in each case. Covalent modification with 2-(trimethylammonium) ethyl methanethiosulfonate was demonstrated only for K143C, which was more accessible in the open state than the closed state, and resulted in a shift in the EC50 toward wild-type values. Charge reversal mutations (E53K, D57K, and D148K) also impaired channel activation, as inferred from increases in EC50 values and the conversion of taurine from an agonist to an antagonist in E53K and D57K. Thus, each of the residues Glu-53, Asp-57, Lys-143, and Asp-148 are implicated in channel gating. However, the double reverse charge mutations E53K:K276E, D57K:K276E, and D148K:K276E did not restore glycine receptor function. These results indicate that loops 2 and 7 in the extracellular domain play an important role in the mechanism of activation of the glycine receptor although not by a direct electrostatic mechanism.  相似文献   

6.
The nicotinic acetylcholine receptors (nAChRs) are a family of closely related but pharmacologically distinct neurotransmitter-gated ion channels. They are therapeutic targets for a wide range of neurological disorders, and a key issue in drug development is selective targeting among the more than 20 subtypes of nAChRs that are known. The present work evaluates a proposed hydrogen bonding interaction involving a residue known as the "loop B glycine" that distinguishes receptors that are highly responsive to ACh and nicotine from those that are much less so. We have performed structure-function studies on the loop B site, including unnatural amino acid mutagenesis, in three different nAChR subtypes and found that the correlation between agonist potency and this residue is strong. Low potency receptor subtypes have a glycine at this key site, and mutation to a residue with a side chain converts a low potency receptor to a high potency receptor. Innately high potency receptors have a lysine at the loop B site and show a decrease in potency for the reverse mutation (i.e., introducing a glycine). This residue lies outside of the agonist binding site, and studies of other residues at the agonist binding site show that the details of how changes at the loop B glycine site impact agonist potency vary for differing receptor subtypes. This suggests a model in which the loop B residue influences the global shape of the agonist binding site rather than modulating any specific interaction.  相似文献   

7.
Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved among different pLGICs. However, little is known about specific interactions between these residues that are likely to be important for gating in α1 GlyRs. Here we use the introduction of cysteine pairs and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218 in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 GlyRs is not crucial for normal channel function. These findings help decipher the GlyR gating pathway and show that distinct residue interaction patterns exist in different pLGICs. Furthermore, a salt bridge between Asp-148 and Arg-218 would provide a possible mechanistic explanation for the pathophysiologically relevant hyperekplexia, or startle disease, mutant Arg-218 → Gln.  相似文献   

8.
The ionic selectivity of ligand-gated ion channels (LGICs) determines whether receptor activation produces an excitatory or inhibitory response. The determinants of anion/cation selectivity were investigated for a new member of the LGIC superfamily, MOD-1, a serotonin-gated chloride channel cloned from the nematode Caenorhabditis elegans. In common with other anionic LGICs (glycine receptors and GABA(A) receptors), the selectivity triple mutant in the pore-forming M2 segment (proline insertion, Ala --> Glu substitution at the central ring, and Thr --> Val at the hydrophobic ring) converted the selectivity of MOD-1 from anionic to cationic. Unlike other LGICs, however, this mutant in MOD-1 was highly selective for K+ over other cations. Subsets of this selectivity triple mutant were studied to define the minimal change required for conversion from anion-permeable to cation-permeable. The double mutant at the central ring of charge (deltaPro-269/A270E) produced a non-selective cation channel. Charge reversal at the central ring alone (A270E) was sufficient to convert MOD-1 to cation-permeable. These results refine the determinants of ion-charge selectivity in LGICs and demonstrate the critical role of the central ring of charge formed by the M2 segments.  相似文献   

9.
Aromatic residues play an important role in the ligand-binding domain of Cys loop receptors. Here we examine the role of the 11 tyrosines in this domain of the 5-HT3 receptor in ligand binding and receptor function by substituting them for alanine, for serine, and, for some residues, also for phenylalanine. The mutant receptors were expressed in HEK293 cells and Xenopus oocytes and examined using radioligand binding, Ca2+ imaging, electrophysiology, and immunochemistry. The data suggest that Tyr50 and Tyr91 are critical for receptor assembly and/or structure, Tyr141 is important for antagonist binding and/or the structure of the binding pocket, Tyr143 plays a critical role in receptor gating and/or agonist binding, and Tyr153 and Tyr234 are involved in ligand binding and/or receptor gating. Tyr73, Tyr88, Tyr94, Tyr167, and Tyr240 do not appear to play major roles either in the structure of the extracellular domain or in ligand binding. The data support the location of these residues on a model of 5-HT docked into the ligand-binding domain and also provide evidence for the structural similarity of the extracellular domain to AChBP and the homologous regions of other Cys loop ligand-gated ion channels.  相似文献   

10.
Binding of agonists to nicotinic acetylcholine receptors generates a sequence of conformational changes resulting in channel opening. Previously, we have shown that the aspartate residue Asp-266 at the M2-M3 linker of the alpha7 nicotinic receptor is involved in connecting binding and gating. High resolution structural data suggest that this region could interact with the so-called loops 2 and 7 of the extracellular N-terminal region. In this case, certain charged amino acids present in these loops could integrate together with Asp-266 and other amino acids, a mechanism involved in channel activation. To test this hypothesis, all charged residues in these loops, Asp-42, Asp-44, Glu-45, Lys-46, Asp-128, Arg-130, and Asp-135, were substituted with other amino acids, and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Glu-45, Lys-46, and Asp-135 exhibited poor or null functional responses to different nicotinic agonists regardless of significant membrane expression, whereas D128A showed a gain of function effect. Because the double reverse charge mutant K46D/D266K did not restore receptor function, a gating mechanism controlled by the pairwise electrostatic interaction between these residues is not likely. Rather, a network of interactions formed by residues Lys-46, Asp-128, Asp-135, Asp-266, and possibly others appears to link agonist binding to channel gating.  相似文献   

11.
Homomeric alpha7 and heteromeric alpha4beta2 nicotinic acetylcholine receptors (nAChR) can be distinguished by their pharmacological properties, including agonist specificity. We introduced point mutations of conserved amino acids within the C loop, a region of the receptor critical for agonist binding, and we examined the expression of the mutant receptors in Xenopus oocytes. Mutation of either a conserved C loop tyrosine (188) to phenylalanine or a nearby conserved aspartate (197) to alanine resulted in alpha7 receptors for which the alpha7-selective agonist 3-(4-hydroxy, 2-methoxybenzylidene) anabaseine (4OH-GTS-21) had roughly the same potency as for wild-type receptors, whereas the physiologic agonist acetylcholine (ACh) showed drastically reduced potency for these mutant receptors. Corresponding mutations in alpha4 receptors co-expressed with beta2 resulted in alpha4beta2 receptors for which ACh potency was relatively unchanged, although the efficacy of the alpha7-selective agonist 4OH-GTS-21 was increased greatly relative to that of ACh. We also investigated the significance of a conserved lysine (145 in alpha7), proposed to form a stable salt bridge with Asp-197 in the resting state of the receptor. Mutations of this residue in both alpha7 and alpha4 resulted in receptors that were largely unresponsive to both ACh and 4OH-GTS-21. Our results suggest that initiation of gating depends both on specific interactions between residues in the C loop domain and, depending on receptor subtype, the physiochemical properties of the agonist, so that in the altered environment of the alpha4Y190F-binding site, large hydrophobic benzylidene anabaseines may close the C loop and initiate channel gating more effectively than the polar agonist ACh.  相似文献   

12.
gamma-Aminobutyric acid type A (GABA(A)) receptors are members of the Cys-loop superfamily of ligand-gated ion channels. Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state, but the mechanism of gating is not well understood. Here we utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study the gating interface of the human homopentameric rho1 GABA(A) receptor. We have identified an ion pair interaction between two conserved charged residues, Glu(92) in loop 2 of the extracellular domain and Arg(258) in the pre-M1 region. We hypothesize that the salt bridge exists in the closed state by kinetic measurements and free energy analysis. Several other charged residues at the gating interface are not critical to receptor function, supporting previous conclusions that it is the global charge pattern of the gating interface that controls receptor function in the Cys-loop superfamily.  相似文献   

13.
We previously found that native cyclic nucleotide-gated (CNG) cation channels from amphibian rod cells are directly and reversibly inhibited by analogues of diacylglycerol (DAG), but little is known about the mechanism of this inhibition. We recently determined that, at saturating cGMP concentrations, DAG completely inhibits cloned bovine rod (Brod) CNG channels while only partially inhibiting cloned rat olfactory (Rolf) channels (Crary, J.I., D.M. Dean, W. Nguitragool, P.T. Kurshan, and A.L. Zimmerman. 2000. J. Gen. Phys. 116:755-768; in this issue). Here, we report that a point mutation at position 204 in the S2-S3 loop of Rolf and a mouse CNG channel (Molf) found in olfactory epithelium and heart, increased DAG sensitivity to that of the Brod channel. Mutation of this residue from the wild-type glycine to a glutamate (Molf G204E) or aspartate (Molf G204D) gave dramatic increases in DAG sensitivity without changing the apparent cGMP or cAMP affinities or efficacies. However, unlike the wild-type olfactory channels, these mutants demonstrated voltage-dependent gating with obvious activation and deactivation kinetics. Interestingly, the mutants were also more sensitive to inhibition by the local anesthetic, tetracaine. Replacement of the position 204 glycine with a tryptophan residue (Rolf G204W) not only gave voltage-dependent gating and an increased sensitivity to DAG and tetracaine, but also showed reduced apparent agonist affinity and cAMP efficacy. Sequence comparisons show that the glycine at position 204 in the S2-S3 loop is highly conserved, and our findings indicate that its alteration can have critical consequences for channel gating and inhibition.  相似文献   

14.
A generalized model is presented of agonist binding to ligand-gated ion channels (LGICs). Broad similarity in the structure of agonists suggests that the binding sites of LGICs may have evolved from a protobinding site. Aligned sequence data identified as a candidate for such a site a highly conserved 15 residue stretch of primary structure in the N-terminal extracellular region of all known LGIC subunits. We modeled this subregion, termed the cys-loop, as a rigid, amphiphilic beta-hairpin and propose that it may form a major determinant of a conserved structural binding cleft. In the model of the binding complex (1) an invariant aspartate residue at position 11 of the cys-loop is the anionic site interacting with the positively charged amine group of agonists, (2) a local dipole within the pi-electron system of agonists is favorably oriented in the electrostatic field of the invariant aspartate, (3) the epsilon ring-proton of a conserved aromatic residue at the turn of the cys-loop interacts orthogonally with the agonist pi-electron density at its electronegative center, and (4) selective recognition is partly a result of the type of amino acid residue at position 6 of the cys-loop. Additionally, formation of a hydrogen bond between the electronegative atom of the pi-electron system of agonist and a complementary group in the receptor may be important in the high-affinity binding of agonists.  相似文献   

15.
Charged residues in the beta2 subunit involved in GABAA receptor activation   总被引:1,自引:0,他引:1  
Fast synaptic inhibition in the mammalian central nervous system is mediated primarily via activation of the gamma-aminobutyric acid type A receptor (GABAA-R). Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state. This transition, known as gating, is thought to be associated with a sequence of conformational changes originating at the agonist-binding site, ultimately resulting in opening of the channel. Using site-directed mutagenesis and several different GABAA-R agonists, we identified a number of highly conserved charged residues in the GABAA-R beta2 subunit that appear to be involved in receptor activation. We then used charge reversal double mutants and disulfide trapping to investigate the interactions between these flexible loops within the beta2 subunit. The results suggest that interactions between an acidic residue in loop 7 (Asp146) and a basic residue in pre-transmembrane domain-1 (Lys215) are involved in coupling agonist binding to channel gating.  相似文献   

16.
The present study tested the hypothesis that several residues in Loop 2 of alpha1 glycine receptors (GlyRs) play important roles in mediating the transduction of agonist activation to channel gating. This was accomplished by investigating the effect of cysteine point mutations at positions 50-60 on glycine responses in alpha1GlyRs using two-electrode voltage clamp of Xenopus oocytes. Cysteine substitutions produced position-specific changes in glycine sensitivity that were consistent with a beta-turn structure of Loop 2, with odd-numbered residues in the beta-turn interacting with other agonist-activation elements at the interface between extracellular and transmembrane domains. We also tested the hypothesis that the charge at position 53 is important for agonist activation by measuring the glycine response of wild type (WT) and E53C GlyRs exposed to methanethiosulfonate reagents. As earlier, E53C GlyRs have a significantly higher EC(50) than WT GlyRs. Exposing E53C GlyRs to the negatively charged 2-sulfonatoethyl methanethiosulfonate, but not neutral 2-hydroxyethyl methanethiosulfonate, positively charged 2-aminoethyl methanethiosulfonate, or 2-trimethylammonioethyl methanethiosulfonate, decreased the glycine EC(50) to resemble WT GlyR responses. Exposure to these reagents did not significantly alter the glycine EC(50) for WT GlyRs. The latter findings suggest that the negative charge at position 53 is important for activation of GlyRs through its interaction with positive charge(s) in other neighboring agonist activation elements. Collectively, the findings provide the basis for a refined molecular model of alpha1GlyRs based on the recent x-ray structure of a prokaryotic pentameric ligand-gated ion channel and offer insight into the structure-function relationships in GlyRs and possibly other ligand-gated ion channels.  相似文献   

17.
Subunit a plays a key role in promoting H(+) transport and the coupled rotary motion of the subunit c ring in F(1)F(0)-ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(0) subunit c. H(+) are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a based upon the chemical reactivity of Cys substituted into these helices. Here we substituted Cys into loops connecting TMHs 1 and 2 (loop 1-2) and TMHs 3 and 4 (loop 3-4). A large segment of loop 3-4 extending from loop residue 192 loop to residue 203 in TMH4 at the lipid bilayer surface proved to be very sensitive to inhibition by Ag(+). Cys-161 and -165 at the other end of the loop bordering TMH3 were also sensitive to inhibition by Ag(+). Further Cys substitutions in residues 86 and 93 in the middle of the 1-2 loop proved to be Ag(+)-sensitive. We next asked whether the regions of Ag(+)-sensitive residues clustered together near the surface of the membrane by combining Cys substitutions from two domains and testing for cross-linking. Cys-161 and -165 in loop 3-4 were found to cross-link with Cys-202, -203, or -205, which extend into TMH4 from the cytoplasm. Further Cys at residues 86 and 93 in loop 1-2 were found to cross-link with Cys-195 in loop 3-4. We conclude that the Ag(+)-sensitive regions of loops 1-2 and 3-4 may pack in a single domain that packs at the ends of TMHs 3 and 4. We suggest that the Ag(+)-sensitive domain may be involved in gating H(+) release at the cytoplasmic side of the aqueous access channel extending through F(0).  相似文献   

18.
A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily.  相似文献   

19.
The nicotinic acetylcholine receptor and related Cys-loop receptors are ligand-gated ion channels that mediate fast synaptic transmission throughout the central and peripheral nervous system. A highly conserved aspartate residue (D89) that is near the agonist binding site but does not directly contact the ligand plays a critical part in receptor function. Here we probe the role of D89 using unnatural amino acid mutagenesis coupled with electrophysiology. Homology modeling implicates several hydrogen bonds involving D89. We find that no single hydrogen bond is essential to proper receptor function. Apparently, the side chain of D89 establishes a redundant network of hydrogen bonds; these bonds preorganize the agonist binding site by positioning a critical tryptophan residue that directly contacts the ligand. Earlier studies of the D89N mutant led to the proposal that a negative charge at this position is essential for receptor function. However, we find that receptors with neutral side chains at position 89 can function well, if the side chain is less perturbing than the amide of asparagine (nitro or keto groups allow function) or if a compensating backbone mutation is introduced to relieve unfavorable electrostatics.  相似文献   

20.
The function of positively charged residues and the interaction of positively and negatively charged residues of the rat vesicular acetylcholine transporter (rVAChT) were studied. Changing Lys-131 in transmembrane domain helix 2 (TM2) to Ala or Leu eliminated transport activity, with no effect on vesamicol binding. However, replacement by His or Arg retained transport activity, suggesting a positive charge in this position is critical. Mutation of His-444 in TM12 or His-413 in the cytoplasmic loop between TM10 and TM11 was without effect on ACh transport, but vesamicol binding was reduced with His-413 mutants. Changing His-338 in TM8 to Ala or Lys did not effect ACh transport, however replacement with Cys or Arg abolished activity. Mutation of both of the transmembrane histidines or all three of the luminal loop histidines showed no change in acetylcholine transport. The mutant H338A/D398N between oppositely charged residues in transmembrane domains showed no vesamicol binding, however the charge reversal mutant H338D/D398H restored binding. This suggests that His-338 forms an ion pair with Asp-398. The charge neutralizing mutant K131A/D425N or the charge exchanged mutant K131D/D425K did not restore ACh transport. Taken together these results provide new insights into the tertiary structure in VAChT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号