首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of substituted kynurenines (3-bromo-dl, 3-chloro-dl, 3-fluoro-dl, 3-methyl-dl, 5-bromo-l, 5-chloro-l, 3,5-dibromo-l and 5-bromo-3-chloro-dl) have been synthesized and tested for their substrate activity with human and Pseudomonas fluorescens kynureninase. All of the substituted kynurenines examined have substrate activity with both human as well as P. fluorescens kynureninase. For the human enzyme, 3- and 5-substituted kynurenines have kcat and kcat/Km values higher than l-kynurenine, but less than that of the physiological substrate, 3-hydroxykynurenine. However, 3,5-dibromo- and 5-bromo-3-chlorokynurenine have kcat and kcat/Km values close to that of 3-hydroxykynurenine with human kynureninase. The effects of the 3-halo substituents on the reactivity with human kynureninase may be due to electronic effects and/or halogen bonding. In contrast, for the bacterial enzyme, 3-methyl, 3-halo and 3,5-dihalokynurenines are much poorer substrates, while 3-fluoro, 5-bromo, and 5-chlorokynurenine have kcat and kcat/Km values comparable to that of its physiological substrate, l-kynurenine. Thus, 5-bromo and 5-chloro-l-kynurenine are good substrates for both human as well as bacterial enzyme, indicating that both enzymes have space for substituents in the active site near C-5. The increased activity of the 5-halokynurenines may be due to van der Waals contacts or hydrophobic effects. These results may be useful in the design of potent and/or selective inhibitors of human and bacterial kynureninase.  相似文献   

2.
Two analogues of pyruvate, acetylphosphinate and acetylmethylphosphinate were tested as inhibitors of the E1 (pyruvate dehydrogenase) component of the human and Escherichia coli pyruvate dehydrogenase complexes. This is the first instance of such studies on the human enzyme. The acetylphosphinate is a stronger inhibitor of both enzymes (Ki < 1 microM) than acetylmethylphosphinate. Both inhibitors are found to be reversible tight-binding inhibitors. With both inhibitors and with both enzymes, the inhibition apparently takes place by formation of a C2alpha-phosphinolactylthiamin diphosphate derivative, a covalent adduct of the inhibitor and the coenzyme, mimicking the behavior of substrate and forming a stable analogue of the C2alpha-lactylthiamin diphosphate. Formation of the intermediate analogue in each case is confirmed by the appearance of a positive circular dichroism band in the 305-306 nm range, attributed to the 1',4'-iminopyrimidine tautomeric form of the coenzyme. It is further shown that the alphaHis63 residue of the human E1 has a role in the formation of C2alpha-lactylthiamin diphosphate since the alphaHis63Ala variant is only modestly inhibited by either inhibitor, nor did either compound generate the circular dichroism bands assigned to different tautomeric forms of the 4'-aminopyrimidine ring of the coenzyme seen with the wild-type enzyme. Interestingly, opposite enantiomers of the carboligase side product acetoin are produced by the human and bacterial enzymes.  相似文献   

3.
Inhibitors of purified, soluble prolyl hydroxylase (K. Majamaa et al. (1984) Eur. J. Biochem. 138, 239-245; K. Majamaa et al. (1986) J. Biol. Chem. 261, 7819-7823) were tested against isolated chick embryo bone microsomes containing intracisternal prolyl hydroxylase and its radiolabeled, unhydroxylated procollagen substrate. Two groups of inhibitors were used which consisted of pyridine-2-carboxylate and 1,2-dihydroxybenzene (catechol) derivatives. The 2,4- and 2,5-pyridine dicarboxylic acids, which are potent inhibitors of the soluble enzyme (Ki values 2 and 0.8 microM, respectively), were effective in the same concentration range against intracisternal prolyl hydroxylase, although their relative affinities were reversed. Inhibition by pyridine-2,4-dicarboxylate in the microsomal system was reversed by increasing the concentration of 2-oxoglutarate. Pyridine-2,4-dicarboxylic acid did not inhibit the uptake of 2-[14C]oxoglutarate into microsomes, so it appears likely that the inhibitor must traverse the microsomal membrane and act directly at the enzyme level. Pyridine-2-carboxylic acid was ineffective in the microsomal system at 1 mM whereas it is a relatively potent inhibitor of the soluble enzyme with a Ki of 25 microM. This finding suggests that the second carboxyl group of the pyridine carboxylate derivatives may be required for their transport into the microsomal lumen. In the soluble system, 3,4-dihydroxybenzoic acid and 1,2-dihydroxybenzene had been found to be competitive inhibitors with relatively low Ki values of 5 and 25 microM, respectively. In the microsomal system, half-maximal inhibition was obtained at approximately 50-100 microM and inhibition was not reversed by increasing the concentrations of either 2-oxoglutarate or ascorbate, alone or together. These results imply that in situ these compounds do not inhibit prolyl hydroxylase directly. Thus, the microsomal system can assess the accessibility of the intracisternal enzyme to potential inhibitors and offers an insight into the in cellulo potential of such compounds.  相似文献   

4.
Deaza analogues of adenosine and EHNA were tested as inhibitors of the enzyme adenosine deaminase (ADA) obtained from several sources including human erythrocytes, calf intestine, Saccaromices cerevisiae, Escherichia coli and Takadiastase. Ki values of the inhibitors suggest differences among the enzymes both at purine and erythro-nonyl binding site. Among the ribofuranosyl derivatives, 1-deazaadenosine is the best inhibitor, its Ki ranging between 3.5 x 10(-7) and 4 x 10(-5) M for ADA from erythrocytes and Takadiastase respectively. Only ADA from erythrocytes and calf intestine bind EHNA and some of deazaEHNA analogues; 3-deazaEHNA behaves very similarly to EHNA both in affinity and slow binding mechanism, whereas 1-deazaEHNA, though less potent, is a good inhibitor.  相似文献   

5.
Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.  相似文献   

6.
Biscoumarin derivatives 1-27 were tested for their inhibition of snake venom and human nucleotide pyrophosphatase phosphodiesterase-1 enzymes. Lineweaver-Burk and Dixon plots and their secondary replots showed that these compounds are pure non-competitive inhibitors of both the enzymes. Ki and IC50 values of biscoumarins were found to be in the range of 50 to 1000 and 164 to > 1000 microM, respectively, against human recombinant phosphodiesterase 1 enzyme and 8.0 to 1150 and 9.44 to > 1000 microM, respectively, against snake venom phosphodiesterase. Compounds 1, 3, 4, 6, 7, 17, 26, and 30 were found to be non-competitive and non-cytotoxic upto a concentration of 200 microg/mL as evident by less than 10% cell death after 3 h of incubation.  相似文献   

7.
Previously, we identified ascorbic acid 6-O-hexadecanoate as an up to 1500 times more potent inhibitor of bacterial and bovine hyaluronidases than the parent compound, vitamin C, and determined a crystal structure of hyaluronidase from Streptococcus pneumoniae in complex with the inhibitor. As the alkanoyl chain interacts with a hydrophobic patch of the enzyme we synthesized other 6-O-acylated vitamin C derivatives bearing various lipophilic residues and investigated the inhibition of Streptococcus agalactiae strain 4755 hyaluronidase (SagHyal(4755)) and of bovine testicular hyaluronidases (BTH) in a turbidimetric assay. All compounds showed selectivity for the bacterial enzyme. Whereas vitamin C 6-O-hexanoate only weakly inhibited SagHyal(4755), the inhibition of both enzymes increased with the length of the aliphatic chain. In the case of the 6-O-octadecanoate, IC(50) values of 0.9 and 39microM for SagHyal(4755) and BTH, respectively, were determined. Partial replacement of the aliphatic chain with a phenyl, p-phenylene or p-biphenylyl group resulted in inhibitors with activity in the lower micromolar range, too. The title compounds are among the most potent inhibitors of both enzymes known to date.  相似文献   

8.
A series of alpha-ketooxadiazole compounds was prepared and evaluated in vitro as potential inhibitors of human neutrophil elastase (HNE), proteinase-3 (PR-3), and porcine pancreatic elastase (PPE). Several compounds have been found to be very potent, fast, reversible, and selective inhibitors of HNE with Ki values below 100 pM. The highest kon value exceeded 10(7) M(-1) s(-1). Some alpha-ketooxadiazoles were also very effective against PR-3 and PPE with Ki values in the range of 5(-10) nM and 0.1(-2) nM, respectively. The two rings, 1,2,4- and 1,3,4-oxadiazole, are amenable to substitutions, extending the P' side of the inhibitor and allowing additional binding interactions at S' subsites of the enzyme. Nonpeptidic HNE inhibitors containing the oxadiazole heterocycle displayed promising oral bioavailability.  相似文献   

9.
D- and L-aminooxysuccinate were synthesized and evaluated as inhibitors of cytoplasmic aspartate aminotransferase (EC 2.6.1.1) from porcine heart. L-Aminooxysuccinate was shown to be a slow binding inhibitor of the pyridoxal phosphate form of the enzyme with a Ki of 160 nM and a half-life of the inhibited complex of 8 min. Kinetic analysis revealed that inhibition followed a two-step mechanism in which the last step was rate-limiting. D-Aminooxysuccinate was not inhibitory up to a concentration of 0.1 mM. These compounds were compared to D- and L-hydrazinosuccinate, which are potent slow binding inhibitors of aspartate aminotransferase with Ki values of 1.5 and 0.5 nM, respectively. Models of all four analogs were built into the active site of the closed form of the enzyme. The energy-minimized conformations of both L-isomers bound to aspartate aminotransferase show better geometry for hydrogen bond and ion pair formation than do the corresponding D-isomers. The aldimine double bond formed by the L-isomers is not coplanar with the pyridoxal phosphate ring in accordance with the spectral properties of the inhibitor complexes that are characterized by broad absorbance bands. This lack of planarity was not evident for the models of D-hydrazinosuccinate and D-aminooxysuccinate.  相似文献   

10.
D Grobelny  L Poncz  R E Galardy 《Biochemistry》1992,31(31):7152-7154
The hydroxamic acid HONHCOCH2CH(i-Bu)CO-L-Trp-NHMe, isomer 6A (GM 6001), inhibits human skin fibroblast collagenase with Ki of 0.4 nM using the synthetic thiol ester substrate Ac-Pro-Leu-Gly-SCH(i-Bu)CO-Leu-Gly-OEt at pH 6.5. The other isomer, 6B, which has the opposite configuration at the CH2CH(i-Bu)CO alpha-carbon atom, has a Ki of 200 nM for this enzyme. GM 6001 is one of the most potent inhibitors of human skin fibroblast collagenase yet reported. GM 6001 has a Ki of 20 nM against thermolysin and Pseudomonas aeruginosa elastase. Isomer 6B has a Ki of 7 nM against thermolysin and 2 nM against the elastase. 6A and 6B are the most potent hydroxamate inhibitors reported for these bacterial enzymes. The pattern of inhibition for all three enzymes suggests that isomer 6A is the (R,S) compound, stereochemically analogous to the L,L-dipeptide, and isomer 6B is the (S,S) compound, analogous to the DL-dipeptide. The tolerance of the D configuration by thermolysin and the elastase allows these inhibitors to discriminate between the human and bacterial enzymes simply by inversion of configuration at the CH2CH(i-Bu)CO alpha-carbon atom. Substitution of the potential metal liganding groups carboxylate and hydrazide for the hydroxamate group yields much weaker inhibitors for all three enzymes.  相似文献   

11.
A bacterial complementation assay has been developed for the rapid screening of a large number of compounds to identify those that inhibit an enzyme target for structure-based inhibitor design. The target enzyme is the hypoxanthine phosphoribosyltransferase (HPRT). This enzyme has been proposed as a potential target for inhibitors that may be developed into drugs for the treatment of diseases caused by several parasites. The screening assay utilizes genetically deficient bacteria complemented by active, recombinant enzyme grown in selective medium in microtiter plates. By comparing absorbance measurements of bacteria grown in the presence and absence of test compounds, the effect of the compounds on bacterial growth can be rapidly assayed. IC50 values for inhibition of bacterial growth are a reflection of the ability of the compounds to bind and/or inhibit the recombinant enzyme. We have tested this bacterial complementation screening assay using recombinant HPRT from the parasites Plasmodium falciparum and Trypanosoma cruzi, as well as the human enzyme. The results of these studies demonstrate that a screening assay using bacterial complement selection can be used to identify compounds that target enzymes and can become an important part of structure-based drug design efforts. Received: 4 December 1997 / Received revision: 17 March 1998 / Accepted: 26 March 1998  相似文献   

12.
Formycin B (FB), a moderate inhibitor (Ki approximately 100 microM) of mammalian purine nucleoside phosphorylase (PNP), and formycin A (FA), which is totally inactive vs. the mammalian enzyme, are both effective inhibitors of the bacterial (Escherichia coli) enzyme (Ki approximately 5 microM). Examination of a series of N-methyl analogues of FA and FB led to the finding that N(6)-methyl-FA, virtually inactive vs. the mammalian enzyme, is the most potent inhibitor of E. coli purine nucleoside phosphorylase (Ki approximately 0.3 uM) at neutral pH. Inhibition is competitive not only with respect to Ino, but also relative to 7-methyl-Guo and 7-methyl-Ado, as substrates. Both oxoformycins A and B are relatively poor inhibitors. For the most potent inhibitor, N(6)-methyl-FA, it was shown that the enzyme preferentially binds the neutral, and not the cationic, form. In accordance with this the neutral, but not the cationic form, of the structurally related N(1)-methyl-Ado was found to be an excellent substrate. Reported data on tautomerism of formycins were profited from, and extended, to infer which tautomeric species and ionic forms are the active inhibitors. A commercially available (Sigma) bacterial PNP, of unknown origin, was shown to differ from the E. coli enzyme by its inability to phosphorylase Ado; this enzyme was also resistant to FA and FB. These findings have been extended to provide a detailed comparison of the substrate/inhibitor properties of PNP from various microorganisms.  相似文献   

13.
A series of non-steroidal anti-inflammatory drugs (NSAIDs) and some of their metabolites were evaluated for their ability to inhibit the proteolytic activity of human granulocyte elastase (HGE) and cathepsin G (HGC-G). The enzyme activity was monitored using specific synthetic chromogenic substrates. The results obtained indicated that phenylbutazone, sulindac, piroxicam and gold sodium thiomalate significantly inhibited HGE (Ki less than 0.5 mM), while only sulindac, diflunisal and gold sodium thiomalate were effective inhibitors of HGC-G (Ki less than 0.4 mM). Studies on metabolites of some of the NSAID tested were found to be superior inhibitors of both HGE and HGC-G than the parent molecules. Moreover, of the 18 compounds examined, the major metabolite of sulindac, sulindac sulphide was the most potent inhibitor of HGE (Ki = 0.01 mM) and HGC-G (Ki = 0.15 mM).  相似文献   

14.
Several pyrrolidine derivatives have been synthesized and examined for their inhibitory activity on post-proline cleaving enzymes from Flavobacterium meningosepticum and bovine brain. Almost all the compounds tested in this study inhibited the activity of both enzymes at low IC50 values (from nM to microM) but a specificity difference was observed with alkylacyl-peptidyl-pyrrolidine derivatives which strongly inhibited only the bacterial enzyme. The most effective inhibitors have a proline residue on their P2 sites and a substituted or unsubstituted phenoxybutyryl moiety on their P3 sites. Thus phenoxybutyryl-prolyl-pyrrolidine is the most effective partial structure of the inhibitors. The best inhibitors found were: 4-(4-benzylphenoxy)butyryl-prolyl-pyrrolidine for bacterial enzyme (IC50 1.4 nM) and 4-phenylbutyryl-thioprolyl-pyrrolidine for bovine brain enzyme (IC50 67 nM). In the passive avoidance test, using amnesic rats experimentally induced with scopolamine, the pyrrolidine derivatives which had potent inhibitory activity toward post-proline cleaving enzymes also showed strong anti-amnesic activities at doses of 1-5 mg/kg, i.p.  相似文献   

15.
To examine the mode of action of debrisoquin (DEB), we studied the effect of this drug in vitro on MAO A and MAO B enzyme activities. DEB was shown to be a competitive inhibitor of highly purified human MAO A and MAO B enzyme activities. DEB inhibited placental MAO A with a Ki value of 0.5 microM and liver MAO B with a Ki value of 8.8 microM, 18-fold greater effect on the A form. Kynuramine was used as substrate for both enzymes. Additional studies using a dilution technique showed that DEB was a reversible inhibitor of both forms of the enzyme. The results of this study show that DEB is a potent competitive and reversible inhibitor of both MAO A and MAO B enzymes.  相似文献   

16.
To examine the idea that glutamate decarboxylase from E. coli can be a convenient source for the study of the effects of compounds on GABA synthesis in the nervous system, a series of substrate analogues and divalent cations were tested as potential inhibitors of the bacterial enzyme. Those analogues exhibiting inhibitor activity did so in a competitive manner. The most effective inhibitors were 3-mercaptopropionic acid, 4-bromoisophthalic acid and isophthalic acid which exhibited Ki values of 0.13 mM, 0.22 mM and 0.31 mM, respectively. Eight other analogues produced lesser degrees of inhibition. In addition, seven divalent metal cations were tested as inhibitors of the enzyme. However, only Hg2+, Cd2+, Cu2+ and Zn2+ were effective at a concentration of 0.1mM. When these results were compared to the patterns of inhibition of glutamate decarboxylase from mouse brain, certain differences in the manner in which the enzymes responded to the inhibitors, emerged. Consequently, the bacterial decarboxylase may not be a good model for the study of drug action on brain GABA synthesis.  相似文献   

17.
Cysteine conjugate beta-lyase is a name applied to enzymes which cleave the S-cysteine conjugates of some xenobiotics to pyruvate, ammonia, and a thiol. Recently, several laboratories have characterized these enzymes from kidney, liver, and bacterial sources in an effort to understand their role in the genesis of novel sulfur-containing metabolites of xenobiotics and in the toxicity of some S-cysteine conjugates. Kynureninase is an enzyme which plays a key role in the biosynthesis of nicotinamide ribonucleotides. This investigation demonstrates that rat hepatic cysteine conjugate beta-lyase is the same enzyme as kynureninase. Both activities copurify on ion exchange, hydroxylapatite, and molecular exclusion chromatography. The subunit composition of enzyme prepared by two different methods is identical, Mr = 55,000. The Km values for 3-OH-kynurenine and kynurenine are 13 and 400 microM, respectively. Kynurenine and 3-hydroxykynurenine inhibit cysteine conjugate beta-lyase activity. Inactivation of the enzyme by substrates which undergo beta-elimination results in loss of kynureninase activity, but kynurenine does not inactivate the enzyme. Both enzyme activities react with anti-cysteine conjugate beta-lyase antibody. Product inhibitors of kynureninase, anthranilate, and 3-hydroxyanthranilate are also inhibitors of cysteine conjugate beta-lyase. Heat inactivation at 70 degrees C produced coincident loss of both activities. The enzyme has an absorption maximum at 432 nm suggesting a bound pyridoxal phosphate. These data show that at least one cysteine conjugate beta-lyase is a pyridoxal phosphate enzyme with a biological function other than xenobiotic metabolism. The enzyme can catalyze two distinct types of reactions, i.e. beta-elimination and the kynureninase reaction.  相似文献   

18.
Effects of acyclovir and its metabolites on purine nucleoside phosphorylase   总被引:5,自引:0,他引:5  
Acyclovir (9-(2-hydroxyethoxymethyl)guanine), the clinically useful antiherpetic agent, is an "acyclic" analogue of 2'-deoxyguanosine. Purine nucleoside phosphorylase partially purified from human erythrocytes did not catalyze detectable phosphorolysis of this drug or any of its metabolites (less than 0.07% of the rate with Guo). However, these compounds were competitive inhibitors of this enzyme with Ino as the variable substrate. Acyclovir per se was a relatively weak inhibitor. Its Ki value (91 microM) was much greater than that for its 8-hydroxy metabolite (Ki = 4.7 microM) but less than that for its carboxylic acid metabolite (9-carboxymethoxy-methylguanine) (K'i = 960 microM). The phosphorylated metabolites of acyclovir were more potent inhibitors than were their guanine nucleotide counterparts. At a phosphate concentration of 50 mM, the apparent Ki values for the mono- (120 microM), di- (0.51 microM), and tri (43 microM)-phosphate esters of acyclovir were 1/2, 1/1200, and 1/26 those for dGMP, dGDP, and dGTP, respectively. The concentration of phosphate did not markedly affect the Ki value of acyclovir but dramatically affected those of its phosphorylated metabolites and their nucleotide counterparts. Decreasing phosphate to a physiological concentration (1 mM) decreased the apparent Ki values for the mono-, di-, and triphosphate esters of acyclovir to 6.6, 0.0087, and 0.31 microM, respectively. Inhibition of the enzyme by acyclovir diphosphate was also influenced by pH. This metabolite of acyclovir is the most potent inhibitor of purine nucleoside phosphorylase reported to date. It has some features of a "multisubstrate" analogue inhibitor.  相似文献   

19.
Several N-(3-phenylpropyl)-substituted spermidine and spermine derivatives were prepared and found to be potent competitive inhibitors of Trypanosoma cruzi trypanothione reductase (seven compounds with Ki values < 5 microM are described). The most effective inhibitor studied was compound 12 with a Ki value of 0.151 microM. Six of the compounds described are also effective trypanocides with IC50 values < 1 microM.  相似文献   

20.
Fluorinated phenylcyclopropylamines and alkylamines were examined as inhibitors of recombinant human liver monoamine oxidase A (MAO A) and B (MAO B). For a series of trans- and cis-2-fluoro-2-phenylcyclopropylamine analogues, the presence of fluorine attached to a cyclopropane ring was found to result in an increase in inhibitory activity towards both MAO A and B. In addition, p-substitution of electron-withdrawing groups such as Cl and F in the aromatic ring of the trans-isomers increased the inhibition of both enzymes. (1S,2S)-2-Fluoro-2-phenylcyclopropylamine was a more potent inhibitor of both MAO A and B than was the (1R,2R)-enantiomer, indicating that the presence of fluorine has no influence on the enantioselectivity of MAO inhibition, since a similar effect of stereochemistry has been reported for tranylcypromine. Interestingly, fluorination at the 2-position of 1-phenycyclopropylamine, which is known as a selective inhibitor of MAO B relative to MAO A, reversed the selectivity and resulted in a potent inhibitor selective for MAO A. All inhibitors showed time- and concentration-dependent inhibition for both enzymes, with the exception of trans-2-fluoro-2-phenylcyclopropyl ethylamine, which acts as a competitive and reversible MAO A selective inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号