首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion-gating ability and the protein electrophoretic band patterns of the acetylcholine receptor from Torpedo californica electroplax were examined after receptor-enriched membrane vesicles were progressively heated. The ion translocation function was lost over a temperature range of 40-55 degrees C. Previous results have shown that the stoichiometry of alpha-bungarotoxin binding is not affected by these temperatures, although bound toxin reversibly dissociates within this temperature range, and that toxin binding is irreversibly lost at somewhat higher temperatures [Soler, G., Farach, M.C., Farach, H. A., Jr., Mattingly, J.R., Jr., & Martinez-Carrion, M. (1983) Arch. Biochem. Biophys. 225, 872]. Thermal gel analysis [Lysko, K. A., Carlson, R., Taverna, R., Snow, J., & Brandts, J.F. (1981) Biochemistry 20, 5570], a sodium dodecyl sulfate-polyacrylamide gel electrophoretic procedure which detects thermally induced aggregation of the components of multimeric systems, was applied to heated acetylcholine receptor enriched membranes. This technique suggests two structural domains susceptible to thermal perturbation within the receptor molecule, one consisting of the Mr 50 000 and the two Mr 40 000 subunits and the other consisting of the Mr 60 000 and 65 000 subunits. Heat disrupts molecular events linking agonist binding with ion-channel opening in the acetylcholine receptor molecule.  相似文献   

2.
Summary Using mouse spleen cells, before and after treatment with glutaraldehyde or mild hyperthermia, we observe a strong correlation between permeability to fluorescein and susceptibility to staining with N-dansyl-l-lysine (irrespective of the cells' ability to exclude trypan blue). We observe the same correlation using liposomes prepared from phosphatidylcholine and varying amounts of cholesterol. We have recently introduced N-dansyl-l-lysine as a fluorescent membrane stain, or probe, whose uptake, we propose, is selective for phospholipid domains in membranes (G.M.K. Humphries & J.P. LovejoyBiophys. J. 42:307–310, 1983; G.M.K. Humphries & J.P. LovejoyJ. Membrane Biol. 77:115–122, 1984). The results presented here are consistent with the hypothesis that the presence or absence of phospholipid domains in membranes also modifies their permeability toward fluorescein, and suggests that permeability towards other chemical species may be similarly affected. On the basis of work using liposomes, we believe this to be the case for carboxy-fluorescein and for glucose.  相似文献   

3.
In this work, we present a generalization of Zwanzig's protein unfolding analysis [Zwanzig, R., 1997. Two-state models of protein folding kinetics. Proc. Natl Acad. Sci. USA 94, 148-150; Zwanzig, R., 1995. Simple model of protein folding kinetics. Proc. Natl Acad. Sci. USA 92, 9801], in order to calculate the free energy change Delta(N)(D)F between the protein's native state N and its unfolded state D in a chemically induced denaturation. This Extended Zwanzig Model (EZM) is both based on an equilibrium statistical mechanics approach and the inclusion of experimental denaturation curves. It enables us to construct a suitable partition function Z and to derive an analytical formula for Delta(N)(D)F in terms of the number K of residues of the macromolecule, the average number nu of accessible states for each single amino acid and the concentration C(1/2) where the midpoint of the N<==>D transition occurs. The results of the EZM for proteins where chemical denaturation follows a sigmoidal-type profile, as it occurs for the case of the T70N human variant of lysozyme (PDB code: T70N) [Esposito, G., et al., 2003. J. Biol. Chem. 278, 25910-25918], can be splitted into two lines. First, EZM shows that for sigmoidal denaturation profiles, the internal degrees of freedom of the chain play an outstanding role in the stability of the native state. On the other hand, that under certain conditions DeltaF can be written as a quadratic polynomial on concentration C(1/2), i.e., DeltaF approximately aC(1/2)(2)+bC(1/2)+c, where a,b,c are constant coefficients directly linked to protein's size K and the averaged number of non-native conformations nu. Such functional form for DeltaF has been widely known to fit experimental measures in chemically induced protein denaturation [Yagi, M., et al., 2003. J. Biol. Chem. 278, 47009-47015; Asgeirsson, B., Guojonsdottir, K., 2006. Biochim. Biophys. Acta 1764, 190-198; Sharma, S., et al., 2006. Protein Pept. Lett. 13(4), 323-329; Salem, M., et al., 2006. Biochim. Biophys. Acta 1764(5), 903-912] so EZM can shed some light into the physical meaning of the experimental values for the a,b,c coefficients.  相似文献   

4.
The depolarization signal of the diffraction patterns from muscle fibers includes information that differs from that of transmission birefringence experiments. Although both the birefringence studies and the phase shift studies of Yeh et al. (Yeh, Y, and G. Pinsky, 1983, Biophys. J., 42:83-90; Yeh, Y., M. E. Corcoran, R. J. Baskin, and R. L. Lieber, 1983, Biophys. J., 44:343-351) include inseparable intrinsic and form contributions, the present analysis shows that the magnitude of the E-field components of diffracted light is affected only by the intrinsic contribution. We have analyzed the amplitude portion of the data of which the phase shift portion had previously been reported (Yeh, Y., M. E. Corcoran, R. J. Baskin, and R. L. Lieber, 1983, Biophys. J., 44:343-351). For the relaxed-to-rigor transition, these field amplitudes also exhibit changes when ATP concentration is decreased. The observed decrease in optical depolarization upon rigor is consistent with the idea that optically anisotropic elements move away from the myosin thick filament under such conditions.  相似文献   

5.
ARF-mediated hydrolysis of GTP has been demonstrated to regulate coat disassembly of Golgi-derived COPI transport vesicles (Tanigawa, G., Orci, L., Amherdt, M., Ravazzola, M., Helms, J.B. and Rothman, J.E. (1993) J. Cell Biol. 123, 1365-1371). In addition, a requirement for GTP hydrolysis at an early stage of COPI vesicle biogenesis has been established since cargo uptake is impaired in the presence of GTPgammaS (Nickel, W., Malsam, J., Gorgas, K., Ravazzola, M., Jenne, N., Helms, J.B. and Wieland, F.T. (1998) J. Cell Sci. 111, 3081-3090), a non-hydrolyzable analogue of GTP. We now demonstrate that the GTPase involved in the regulation of cargo uptake is ARF, revealing a multi-functional role of this GTPase in COPI-mediated vesicular transport. The molecular mechanism of cargo uptake as well as the functional implications of these findings on the overall process of COPI vesicle biogenesis are discussed.  相似文献   

6.
We have reported that a major cause of growth inhibition of Escherichia coli by L-serine is its inhibition of homoserine dehydrogenase I (HDH I), which is involved in the biosyntheses of threonine and isoleucine [Hama, H., Sumita, Y., Kakutani, Y., Tsuda, M., & Tsuchiya, T. (1990) Biochem. Biophys. Res. Commun. 168, 1211-1216]. However, Patte et al. reported that L-serine does not inhibit HDH I [Patte, J.-C., Truffa-Bachi, P., & Cohen, G.N. (1966) Biochim. Biophys. Acta 128, 426-439]. In studies on the reason for these discrepant results, we found that the concentration of K+ and the pH in the assay mixture strongly influenced the inhibitory effect of L-serine. L-Serine strongly inhibited the HDH I activities in both the forward and reverse reactions between aspartate semialdehyde and homoserine at a physiological K+ concentration (100 to 200 mM) and physiological pH (7.5) for E. coli cells. On the other hand, two well-known inhibitors of HDH I, L-threonine and L-cysteine, strongly inhibited the activity regardless of the K+ concentration and pH.  相似文献   

7.
The activity of rat liver glutaminase from sedimented fractions of freeze-thawed mitochondria is strongly affected by variation in pH over a physiologically relevant range at approximate physiological concentrations of activators. As pH increases from 7.1 to 7.7 at 0.7 mM ammonium and 10 mM phosphate, the S0.5 for glutamine decreases 3.5-fold, from 38 to 11 mM. This results in an 8-fold increase in reaction velocity at 10 mM glutamine. In addition, the M0.5 for phosphate activation decreases from 21 to 8.9 mM as pH increases from 7.1 to 7.7. This apparent effect of pH on the affinity of glutaminase for phosphate is similar to previous reports of the pH effect on activation by ammonium (Verhoeven, A. J., Van Iwaarden, J. F., Joseph, S. K., and Meijer, A. J. (1983) Eur. J. Biochem. 133, 241-244; McGivan, J. D., and Bradford, N. M. (1983) Biochim. Biophys. Acta 159, 296-302). Glutaminase does not respond to variation in pH between 7.1 and 7.7 when phosphate and ammonium are saturating. The effects of the two modifiers are additive. Each is still effective, as is pH, when the other is saturating. Therefore, it appears that the effects of pH on the apparent affinity of the enzyme for ammonium and phosphate account for the enzyme's response to pH. These results may help explain previous reports of minimal effects of pH on glutaminase at saturating concentrations of related substances (McGivan, J. D., Lacey, J. H., and Joseph, K. (1980) Biochim. J. 192, 537-542; Horowitz, M. L., and Knox, W. E. (1968) Enzymol. Biol. Clin. 9, 241-255; McGivan, J. D., and Bradford, N. M. (1983) Biochim. Biophys. Acta 759, 296-302). Glutaminase binds glutamine cooperatively with Hill coefficients ranging from 1.7 to 2.2, which suggests at least two and probably three or more interacting binding sites for glutamine. The strong response of liver glutaminase to pH and the fact that the reaction can supply metabolites for urea synthesis suggest a possible regulatory role of glutaminase in ureagenesis.  相似文献   

8.
The locations of replication pause sites in the simian virus 40 minichromosome which were determined by sizing cloned fragments of nascent DNA (Zannis-Hadjopoulos et al., J. Mol. Biol. 165:599-607, 1983) were compared with the positions of simian virus 40 nucleosomes in the genome, as obtained by sequence-directed mapping (G. Mengeritsky and E. N. Trifonov, Nucleic Acids Res. 11:3833-3851, 1983; Mengeritsky and Trifonov, Cell Biophys. 6:1-8, 1984). Clear correlation between these two maps is demonstrated, suggesting that nucleosomes hinder propagation of the replication forks.  相似文献   

9.
Expression of insulin metabolic effects can be obtained by anti-receptor antibodies without activation of the tyrosine kinase activity [O'Brien R. M., Soos M. A. and Siddle K. (1987) EMBO J. 6, 4003-4010; Forsayeth J. R., Caro J. F., Sinha M. K., Maddux B. A. and Goldfine I. D. (1987) Proc. natn. Acad. Sci. U.S.A. 84, 34,448-34,514; Ponzio G., Contreres J. O., Debant A., Baron V., Gautier N., Dolais-Kitabgi J. and Rossi B. (1988) EMBO J. 7, 4111-4117; Hawley D. M., Maddux B. A., Patel R. G., Wong K. Y., Mamula P. W., Firestone G. L., Brunetti A., Verspohl E. and Goldfine I. D. (1989) J. biol. Chem. 264, 2438-2444; Soos M. A., O'Brien R. M., Brindle N. P. J., Stigter J. M., Okamoto A. K., Whittaker J. and Siddle K. (1989) Proc. natn. Acad. Sci. U.S.A. 86, 5217-5221.]. Recently, we have proposed that receptor cross-linking is sufficient in itself to stimulate glycogen synthesis, even if aggregation was performed on receptors mutated on Tyr 1162 and Tyr 1163 and thus devoid of tyrosine kinase activity [Debant A., Ponzio G., Clauser E., Contreres J. O. and Rossi B. (1989) Biochemistry 28, 14-17]. The aim of this study was to gain information on the involvement of receptor clustering in the expression of the different insulin biological effects. To this end, we studied the mimetic effects of wheat-germ agglutinin, which is likely to induce receptor aggregation without interacting with the receptor protein moiety. Wheat-germ agglutinin failed to promote DNA synthesis, whereas the lectin behaved as a potent mimicker of insulin on tyrosine aminotransferase activity and amino-acid transport. However, this stimulatory effect did not parallel the activation of receptor autophosphorylation. Our data reinforce the idea that the expression of the metabolic effects of insulin are not strictly dependent on a general tyrosine kinase activation.  相似文献   

10.
The mechanism of action of one class of sodium channel opening agents (batrachotoxinin, veratridine, aconitine and grayanotoxin) is proposed to involve complexation of a triad of agent oxygen atoms with the ε-ammonium ion of a channel lysing side chain, holding open the mouth or exit of the ion channel. This idea complements the oxygen triad model derived by structural considerations (Masutani, T., Seyama, I., Narahashi, T. and Iwasa, J. (1981) J. Pharm. Exp. Therap. 217,812) and extended by crystal structure comparisons (Codding, P.W. (1983) J. Am. Chem. Soc. 105, 3172). The mechanism is based on results for acetylcholine receptor ion channel gating, structure and function, using single group rotation (SGR) theory (cf. Kosower, E.M. (1983) Biochem. Biophys. Res. Commun. 111, 1022 and in press (1983);FEBS Lett. (1983) 155, 245; ibid. 157, 144; Biophys. J. (1983) 45, in press).  相似文献   

11.
The photoreaction of bacteriorhodopsin was studied in moderately dehydrated films (relative humidities between 100 and 65%). Time-resolved difference spectra from a gated optical multichannel analyzer, between 100 ns and 100 ms after photoexcitation, were decomposed into sums of difference spectra of the intermediates K, L, M, N, and O, and the kinetics obtained were fitted to various alternative schemes. The data confirm the model of a single reaction sequence with reversible reactions we proposed recently for purple membrane suspensions (Váró, G., and J. K. Lanyi. Biochemistry. 1990. 29:2241-2250) but including reversibility also for the reaction K in equilibrium with L in addition to L in equilibrium with M, M in equilibrium with N, and N in equilibrium with O. With increasing dehydration the kinetics were increasingly dominated by the reverse reactions. As before, fitting the data required the existence of two M species in series: L in equilibrium with M1 in equilibrium with M2 in equilibrium with N. The M1 in equilibrium with M2 reaction was greatly slowed at lower humidities. This step might be the switch for the unidirectional transfer of protons. With increasing dehydration recovery of BR occurred less and less via the N intermediate and increasingly via direct shunts from the two M species. As indicated earlier by electrical measurements with similarly dried bacteriorhodopsin films (Váró, G., and L. Keszthelyi, 1983. Biophys. J. 43:47-51). The latter are pathways not necessarily associated with net proton translocation.  相似文献   

12.
Two previous reports from this laboratory showed that the binding of 125I-labeled human choriogonadotropin and 125I-labeled human luteinizing hormone to rat testicular receptors is partially irreversible and the binding parameters obtained from Scatchard analysis of the data can be drastically altered simply by changing the reaction volume of the binding assays (Chen, C.J.H., Lindeman, J.G., Trowbridge, C.G. and Bhalla, V.K. (1979) Biochim, Biophys. Acta 584, 407--435; Bhalla, V.K., Trowbridge, C.G., Chen, C.J.H., Lindeman, J.G. and Rojas, F.J. (1979) Biochim, Biophys. Acta 584, 436--453). It is reported herein that the binding reaction between follicle-stimulating hormone and testicular receptors displays very similar characteristics. The results support the previous conclusion that receptor concentrations fluctuate in the membranes and that the extent of their loss from tissue membranes in vitro is dependent upon time and temperature of incubation, the volume of buffer present, and the quantity of hormone used.  相似文献   

13.
Two recently published reports have described findings which will have a profound impact on the understanding of molecular mechanisms of human resistance to malaria infection. In Melanesian ovalocytosis, a genetic polymorphism found in Papua New Guinea and parts of South East Asia, the red cells are highly resistant to invasion by various species of malaria parasite. The molecular nature of the defect in ovalocytic erythrocytes was not known. Recent reports by Liu et al., (Liu, S.-C., Zhai, S., Palek, J., Golan, D., Amato, D., Hassan, K., Nurse, G., Babona, D., Coetzer, T., Jarolim, P. Zaik, M. and Borwein, S. (1990) N. Engl. J. Med. 323, 1530–1538.) and Jones et al. (Jones, G.L., Edmundson, H.M., Wesche, D. and Saul, A. (1991) Biochim. Biophys. Acta 1096, 33–40.) have now identified the abnormality in the band 3 protein of ovalocytic red cell membranes. A major discovery in the Jones et al, study is the presence of an extended peptide at the N-terminus of ovalocyte band 3 protein. This novel 13 amino acid extended sequence is not found in the primary structure of normal band 3 protein and was suggested to be the cause of band 3 defect in ovalocytes. We have analyzed this extended sequence through Genbank using SWISS-PROT database and found that an almost identical sequence exists in a malaria parasite protein called RESA.  相似文献   

14.
B E Mathern  M Burke 《Biochemistry》1986,25(4):884-889
The substructure and the thermal stability of the subunit interactions of bovine cardiac myosin subfragment 1 (SF1) have been examined. The results are in agreement with previous reports that the cardiac protein is cleaved in a very similar manner [Flink, I. L., & Morkin, E. (1982) Biophys. J. 37, 34; Korner, M., Thiem, N. V., Cardinaud, R., & Lacombe, G. (1983) Biochemistry 22, 5843-5847] but at a much faster rate [Applegate, D., Azarcon, A., & Reisler, E. (1984) Biochemistry 23, 6626-6630] than the skeletal protein. Additionally, it is found that the long-lived, steady-state intermediates formed by these proteins with MgATP at high ionic strength differ in their susceptibilities to tryptic attack especially at the 27K/50K junction of the associated heavy chains, suggesting a different conformation for these intermediates of the cardiac and skeletal SF1's. The thermal stability of the subunit interactions under conditions approaching the physiological state was examined by thermal ion-exchange chromatography of cardiac SF1 at 39.5 degrees C in the presence of MgATP. This results in the separation of part of the protein as the isolated heavy chain which is found to exhibit high levels of ATPase activity in the absence and presence of actin. Tryptic digestion of cardiac SF1 prior to thermal ion-exchange chromatography produces greater dissociation, with the heavy chain in this case being isolated as a complex of 27K, 50K, and 18-20K fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A mutant human lysozyme C77/95A, in which Cys77 and Cys95 are replaced with alanine, has been characterized by 8-fold greater secretion in yeast (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967) and almost the same three-dimensional structure as wild-type human lysozyme (Inaka, K., Taniyama, Y., Kikuchi, M., Morikawa, K., and Matsushima, M. (1991) J. Biol. Chem. 266, 12599-12603). To clarify the molecular features of C77/95A and the reason for its increased secretion in yeast, the stabilities of the mutant C77/95A and the wild-type proteins were examined by guanidine hydrochloride denaturation, and the unfolding-refolding kinetics were determined from circular dichroism and fluorescence stopped-flow measurements. Equilibrium experiments showed that the delta G of unfolding of C77/95A in water was 5.8 kcal/mol less stable than that of the wild-type protein at pH 4.0 and 10 degrees C. The unfolding rate of C77/95A was 4 orders of magnitude faster than that of the wild-type protein whereas the two proteins shared similar refolding rates. The slowly refolding phase of the wild-type protein disappeared in C77/95A, indicating that the disulfide bond affects this phase. These observations show that the disulfide bond Cys77-Cys95 contributes to the stabilization of the folded form of human lysozyme by suppressing the unfolding rate and that the increase in the unfolding rate, or the disappearance of the slowly refolding phase in vitro, could correlate with the increase in secretion efficiency in vivo.  相似文献   

16.
This work shows the feasibility of using pulsed, saturation recovery EPR to study directly the magnetic relaxation properties of metal centers in cytochrome c oxidase in the 1.5-20 K range. Heme a and CuA both showed remarkably similar Tn temperature dependences in their spin-lattice relaxation rates. Either both are in environments with very similar protein backbone configurations (Stapleton, H.J., J.P. Allen, C.P. Flynn, D.G. Stinson, and S.R. Kurtz, 1980, Phys. Rev. Lett., 45:1456-1459; Allen, J.P., J.T. Colvin, D.G. Stinson, C.P. Flynn, and H.J. Stapleton, 1982, Biophys. J., 38:299-310), or the CuA is relaxed by nearby heme a. Spin-lattice relaxation of the nitrosylferrocytochrome a3 center in mixed valence oxidase showed enhancement of relaxation by a nearby paramagnetic center, most likely heme a.  相似文献   

17.
Hydrogen-exchange rates were measured for RNase T1 and three variants with Ala --> Gly substitutions at a solvent-exposed (residue 21) and a buried (residue 23) position in the helix: A21G, G23A, and A21G + G23A. These results were used to measure the stabilities of the proteins. The hydrogen-exchange stabilities (DeltaG(HX)) for the most stable residues in each variant agree with the equilibrium conformational stability measured by urea denaturation (DeltaG(U)), if the effects of D(2)O and proline isomerization are included [Huyghues-Despointes, B. M. P., Scholtz, J. M., and Pace, C. N. (1999) Nat. Struct. Biol. 6, 210-212]. These residues also show similar changes in DeltaG(HX) upon Ala --> Gly mutations (DeltaDeltaG(HX)) as compared to equilibrium measurements (DeltaDeltaG(U)), indicating that the most stable residues are exchanging from the globally unfolded ensemble. Alanine is stabilizing compared to glycine by 1 kcal/mol at a solvent-exposed site 21 as seen by other methods for the RNase T1 protein and peptide helix [Myers, J. K., Pace, C. N., and Scholtz, J. M. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 3833-2837], while it is destabilizing at the buried site 23 by the same amount. For the A21G variant, only local NMR chemical shift perturbations are observed compared to RNase T1. For the G23A variant, large chemical shift changes are seen throughout the sequence, although X-ray crystal structures of the variant and RNase T1 are nearly superimposable. Ala --> Gly mutations in the helix of RNase T1 at both helical positions alter the native-state hydrogen-exchange stabilities of residues throughout the sequence.  相似文献   

18.
Molecular chaperones GroEL and GroES facilitate reactivation of denatured rhodanese which folds poorly unless the process is assisted. The present work tests the hypothesis that more extensively unfolded forms of rhodanese bind tighter than those forms that appear later in the folding pathway. The study of the interaction of different urea-induced forms of rhodanese with GroEL suggests that species preceding the domain folded form bind directly and productively to GroEL. Rhodanese partially folds while in the GroEL-GroES-ADP complex, but it does not significantly reach an active state. Partially folded rhodanese can be released from the GroEL-GroES-ADP complex by subdenaturing concentrations of urea as a homogeneous species that is committed to fold to the native conformation with little or no partitioning to the aggregated state. Dilution of denatured rhodanese to the same final concentration gives less active enzyme and significant aggregation. Urea denaturation studies show that active rhodanese released from complexes behaves identically to native enzyme, while spontaneously folded rhodanese has a different stability. These results are interpreted using a previously proposed model based on studies of unassisted rhodanese folding [Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120-128. Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63-70].  相似文献   

19.
Malaria and ovalocytosis--molecular mimicry?   总被引:1,自引:0,他引:1  
Two recently published reports have described findings which will have a profound impact on the understanding of molecular mechanisms of human resistance to malaria infection. In Melanesian ovalocytosis, a genetic polymorphism found in Papua New Guinea and parts of South East Asia, the red cells are highly resistant to invasion by various species of malaria parasite. The molecular nature of the defect in ovalocytic erythrocytes was not known. Recent reports by Liu et al. (Liu, S.-C., Zhai, S., Palek, J., Golan, D., Amato, D., Hassan, K., Nurse, G., Babona, D., Coetzer, T., Jarolim, P. Zaik, M. and Borwein, S. (1990) N. Engl. J. Med. 323, 1530-1538.) and Jones et al. (Jones, G.L., Edmundson, H.M., Wesche, D. and Saul, A. (1991) Biochim. Biophys. Acta 1096, 33-40.) have now identified the abnormality in the band 3 protein of ovalocytic red cell membranes. A major discovery in the Jones et al. study is the presence of an extended peptide at the N-terminus of ovalocyte band 3 protein. This novel 13 amino acid extended sequence is not found in the primary structure of normal band 3 protein and was suggested to be the cause of band 3 defect in ovalocytes. We have analyzed this extended sequence through Genbank using SWISS-PROT database and found that an almost identical sequence exists in a malaria parasite protein called RESA.  相似文献   

20.
A fluorescence method is presented for quantitatively analyzing exocytosis phenomena and monitoring their kinetics. The method is based on the particular properties of a hydrophobic fluorescent probe, 1-[4-(trimethylammonio)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) [Prendergast, F.G., Haugland, R.P., & Callahan, P.J. (1981) Biochemistry 20, 7333-7338; Kuhry, J.G., Fonteneau, P., Duportail, G., Maechling, C., & Laustriat, G. (1983) Cell Biophys. 5, 129-140; Kuhry, J.G., Duportail, G., Bronner, C., & Laustriat, G. (1985) Biochim. Biophys. Acta 845, 60-67]. When this probe is interacted with intact resting cells in aqueous suspensions, it labels solely the membranes that are in contact with the external medium and is incorporated into them according to a partition equilibrium; i.e., the amount of the probe incorporated is proportional to the available membrane surface. TMA-DPH is highly fluorescent in membranes and not at all in water. Thus, a measurement of the TMA-DPH fluorescence intensity provides a signal proportional to the membrane surface. In secretory cells, the membrane surface available for the probe is increased upon fusion of the membrane of the secretory granules with the cell plasma membranes, directly or via intergranule fusion. Thus, when these cells are stimulated, more TMA-DPH is incorporated than in resting cells since the probe is allowed to also interact with the granule membranes now connected with the external medium by pores. This process results in a proportional increase in the TMA-DPH fluorescence intensity. The response was found to be very rapid and able to follow accurately the exocytosis kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号