首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid (DHLA), have been suggested to chelate transition metal ions and, hence, mitigate iron- and copper-mediated oxidative stress in biological systems. However, it remains unclear whether LA and DHLA chelate transition metal ions in a redox-inactive form, and whether they remove metal ions from the active site of enzymes. Therefore, we investigated the effects of LA and DHLA on iron- or copper-catalyzed oxidation of ascorbate, a sensitive assay for the redox activity of these metal ions. We found that DHLA, but not LA, significantly inhibited ascorbate oxidation mediated by Fe(III)-citrate, suggesting that reduced thiols are required for iron binding. DHLA also strongly inhibited Cu(II)(histidine)(2)-mediated ascorbate oxidation in a concentration-dependent manner, with complete inhibition at a DHLA:Cu(II) molar ratio of 3:1. In contrast, no inhibition of copper-catalyzed ascorbate oxidation was observed with LA. To investigate whether LA and DHLA remove copper or iron from the active site of enzymes, Cu,Zn superoxide dismutase and the iron-containing enzyme aconitase were used. We found that neither LA nor DHLA, even at high, millimolar concentrations, altered the activity of these enzymes. Our results suggest that DHLA chelates and inactivates redox-active transition metal ions in small-molecular, biological complexes without affecting iron- or copper-dependent enzyme activities.  相似文献   

2.
Activities of mature CysHis proteases depend upon relative rates of oxidations vs. reductions of catalytic sulfur by multiple enzymatic and non-enzymatic reactions. CysHis peptidolysis is inhibited by Fe3+ but not Fe2+. Others report the paradox that malarial parasites require exogenous free lipoic acid (LA) from human host, although the apicoplast organelle produces it. Extra-cellular LA disulfide can be taken up and reduced to dihydrolipoic acid (DHLA) by reductases of any cell type. Here, the opposing effects of DHLA vs. Fe3+ on the falcipain-2 hemoglobinase were investigated employing Z-Phe-Arg-AMC substrate. Despite limited solubility, non-regenerated DHLA (10 microM, threshold 2 microM) was found to be the most potent activator of the air-inactivated (sulfoxygenated) protease discovered thus far. Activation was preemptively opposed by Fe3+, but not Fe2+. However, cruzain from T. cruzi, and cathepsin B from mammal were indistinguishable in their responsiveness to DHLA and Fe redox. Thus, DHLA activation vs. Fe3+ inhibition is not unique to falcipain-2 or apicomplexans but is rather a primordial feature of CysHis peptidolysis. Free LA and/or unassociated lipoylated enzyme subunits could be among multiple pathways shuttling reducing equivalents to reduction of proteins, including CysHis proteases. It is discussed that opposing DHLA-Fe3+ modification of plasmodial proteolysis might be a specialized adaptation to intra-erythrocytic growth.  相似文献   

3.
Expression of gelatinase B (matrix metalloprotease 9) in human placenta is developmentally regulated, presumably to fulfill a proteolytic function. Here we demonstrate that gelatinolytic activity in situ, in tissue sections of term placenta, is co-localized with gelatinase B. Judging by molecular mass, however, all the enzyme extracted from this tissue was found in a proform. To address this apparent incongruity, we examined the activity of gelatinase B bound to either gelatin- or type IV collagen-coated surfaces. Surprisingly, we found that upon binding, the purified proenzyme acquired activity against both the fluorogenic peptide (7-methoxycoumarin-4-yl)-acetic acid (MCA)-Pro-Leu-Gly-Leu-3-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl-Ala-Arg-NH(2) and gelatin substrates, whereas its propeptide remained intact. These results suggest that although activation of all known matrix metalloproteases in vitro is accomplished by proteolytic processing of the propeptide, other mechanisms, such as binding to a ligand or to a substrate, may lead to a disengagement of the propeptide from the active center of the enzyme, causing its activation.  相似文献   

4.
Alpha-lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are powerful antioxidants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. The mechanism of anti-inflammatory activity of ALA and DHALA is not known. The present study describes the interaction of ALA and DHALA with pro-inflammatory secretory PLA(2) enzymes from inflammatory fluids and snake venoms. In vitro enzymatic inhibition of sPLA(2) from Vipera russellii, Naja naja and partially purified sPLA(2) enzymes from human ascitic fluid (HAF), human pleural fluid (HPF) and normal human serum (HS) by ALA and DHLA was studied using (14)C-oleate labeled Escherichia coli as the substrate. Biophysical interaction of ALA with sPLA(2) was studied by fluorescent spectral analysis and circular dichroism studies. In vivo anti-inflammatory activity was checked using sPLA(2) induced mouse paw edema model. ALA but not DHLA inhibited purified sPLA(2) enzymes from V. russellii, N. naja and partially purified HAF, HPF and HS in a dose dependent manner. This data indicated that ALA is critical for inhibition. IC(50) value calculated for these enzymes ranges from 0.75 to 3.0 microM. The inhibition is independent of calcium and substrate concentration. Inflammatory sPLA(2) enzymes are more sensitive to inhibition by ALA than snake venom sPLA(2) enzymes. ALA quenched the fluorescence intensity of sPLA(2) enzyme in a dose dependent manner. Apparent shift in the far UV-CD spectra of sPLA(2) with ALA indicated change in its alpha-helical confirmation and these results suggest its direct interaction with the enzyme. ALA inhibits the sPLA(2) induced mouse paw edema in a dose dependent manner and confirms the sPLA(2) inhibitory activity in vivo also. These data suggest that ALA may act as an endogenous regulator of sPLA(2) enzyme activity and suppress inflammatory reactions.  相似文献   

5.
alpha-Lipoic (LA) acid (thioctic acid) is an intramolecular disulfide that may be simply endogenically turned into dithiol. Dihydrolipoic acid (DHLA)/ LA and DHLA are bioantioxidants. They are synthesized in the body and taken with diet. Water- and lipide-soluble LA is highly-effective against the reactive oxygen species. LA (DHLA) protect the biomembranes, mitochondria from oxidative stresses of various kinds. LA, DHLA and lipoamide function as cofactors of polyenzyme mitochondrial complexes of 2-oxoacid dehydrogenases, of glycin decarboxylases and of some other enzymes. LA (DHLA) is ubiquinone reactivator and synergist by vitamin A, C, E. LA optimizes glucose metabolism, it is effective in insulin-resistant diabetes and its complications, in neutopathies and neurodegenerative diseases.  相似文献   

6.
The potential antioxidant effects of the hydrophobic therapeutic agent lipoic acid (LA) and of its reduced form dihydrolipoic acid (DHLA) on the peroxidation of either linoleic acid or human non-HDL fraction catalyzed by soybean 15-lipoxygenase (SLO) and rabbit reticulocyte 15-lipoxygenase (RR15-LOX) were investigated. DHLA, but not LA, did inhibit SLO-dependent lipid peroxidation, showing an IC(50) of 15 microM with linoleic acid and 5 microM with the non-HDL fraction. In specific experiments performed with linoleic acid, inhibition of SLO activity by DHLA was irreversible and of a complete, noncompetitive type. In comparison with DHLA, the well-known lipoxygenase inhibitor nordihydroguaiaretic acid and the nonspecific iron reductant sodium dithionite inhibited SLO-dependent linoleic acid peroxidation with an IC(50) of 4 and 100 microM, respectively, while the hydrophilic thiol N-acetylcysteine, albeit possessing iron-reducing and radical-scavenging properties, was ineffective. Remarkably, DHLA, but not LA, was also able to inhibit the peroxidation of linoleic acid and of the non-HDL fraction catalyzed by RR15-LOX with an IC(50) of, respectively, 10 and 5 microM. Finally, DHLA, but once again not LA, could readily reduce simple ferric ions and scavenge efficiently the stable free radical 1,1-diphenyl-2-pycrylhydrazyl in ethanol; DHLA was considerably less effective against 2,2'-azobis(2-amidinopropane) dihydrochloride-mediated, peroxyl radical-induced non-HDL peroxidation, showing an IC(50) of 850 microM. Thus, DHLA, at therapeutically relevant concentrations, can counteract 15-lipoxygenase-dependent lipid peroxidation; this antioxidant effect may stem primarily from reduction of the active ferric 15-lipoxygenase form to the inactive ferrous state after DHLA-enzyme hydrophobic interaction and, possibly, from scavenging of fatty acid peroxyl radicals formed during lipoperoxidative processes. Inhibition of 15-lipoxygenase oxidative activity by DHLA could occur in the clinical setting, eventually resulting in specific antioxidant and antiatherogenic effects.  相似文献   

7.
In vivo as well as in vitro supply of sodium arsenate inhibited the 5-Amino levulinic acid dehydratase (5-aminolevulinate-hydrolyase EC 4.2.1.24, ALAD) activity in excised etiolated maize leaf segments during greening. The percent inhibition of enzyme activity by arsenate (As) was reduced by the supply of KNO3, but it was increased by the glutamine and GSH. Various inhibitors, such as, chloramphenicol, cycloheximide and LA, decreased the % inhibition of enzyme activity by As. The % inhibition of enzyme activity was also reduced by in vivo supply of DTNB. The enzyme activity was reduced substantially by in vitro inclusion of LA, both in the absence and presence of As. In vitro inclusion of DTNB and GSH inhibited the enzyme activity extracted from leaf segments treated without arsenate (-As enzyme) and caused respectively no effect and stimulatory effect on arsenate treated enzyme (+As enzyme). Increasing concentration of ALA during assay increased the activity of -As enzyme and +As enzyme to different extent, but double reciprocal plots for both the enzymes were biphasic and yielded distinct S0.5 values for the two enzymes (-As enzyme, 40 micromol/L and +As enzyme, 145 micromol/L) at lower concentration range of ALA only. It is suggested that As inhibits ALAD activity in greening maize leaf segments by affecting its thiol groups and/or binding of ALA to the enzyme.  相似文献   

8.
Loss of retinal ganglion cells is the final end point in blinding diseases of the optic nerve such as glaucoma. To enable the use of mouse genetics to investigate mechanisms underlying ganglion cell loss, we adapted an experimental model of optic nerve ligation to the mouse and further characterized post-surgical outcome. We made the novel finding that apoptosis of retinal ganglion cells correlates with specific degradation of laminin from the underlying inner limiting membrane and an increase in gelatinolytic metalloproteinase activity. These changes co-localize with a specific increase in levels of the matrix metalloproteinase, gelatinase B (GelB; MMP-9). Using a transgenic mouse line harboring a reporter gene driven by the GelB promoter, we further show that increased GelB is controlled by activation of the GelB promoter. These findings led us to hypothesize that GelB activity plays a role in ganglion cell death and degradation of laminin. Applying the genetic approach, we demonstrate that GelB-deficient mice are protected against these pathological changes. This is the first report demonstrating a causal connection between GelB activity and pathological changes to the inner retina after optic nerve ligation.  相似文献   

9.
The 72-kDa gelatinase/type IV collagenase, a metalloproteinase thought to play a role in metastasis and in angiogenesis, forms a noncovalent stoichiometric complex with the tissue inhibitor of metalloproteinase-2 (TIMP-2), a potent inhibitor of enzyme activity. To define the regions of the 72-kDa gelatinase responsible for TIMP-2 binding, a series of NH2- and COOH-terminal deletions of the enzyme were constructed using the polymerase chain reaction technique. The full-length and the truncated enzymes were expressed in a recombinant vaccinia virus mammalian cell expression system (Vac/T7). Two truncated enzymes ending at residues 425 (delta 426-631) and 454 (delta 455-631) were purified. Like the full-length recombinant 72-kDa gelatinase, both COOH-terminally truncated enzymes were activated with organomercurial and digested gelatin and native collagen type IV. In contrast to the full-length enzyme, delta 426-631 and delta 455-631 enzymes were less sensitive to TIMP-2 inhibition requiring 10 mol of TIMP-2/mol of enzyme to achieve maximal inhibition of enzymatic activity. The activated but not the latent forms of the delta 426-631 and delta 455-631 proteins formed a complex with TIMP-2 only when excess molar concentrations of inhibitor were used. We also expressed the 205-amino acid COOH-terminal fragment, delta 1-426, and found that it binds TIMP-2. In addition, a truncated version of the 72-kDa gelatinase lacking the NH2-terminal 78 amino acids (delta 1-78) of the proenzyme retained the ability to bind TIMP-2. These studies demonstrate that 72-kDa gelatinases lacking the COOH-terminal domain retain full enzymatic activity but acquire a reduced sensitivity to TIMP-2 inhibition. These data suggest that both the active site and the COOH-terminal tail of the 72-kDa gelatinase independently and cooperatively participate in TIMP-2 binding.  相似文献   

10.
The metalloproteinase 'gelatinase' stored in the granules of pig polymorphonuclear leucocytes has been purified in the latent form. The enzyme is secreted as an Mr 97,000 proenzyme that can be activated in the presence of 4-aminophenylmercuric acetate (APMA) by self-cleavage to generate lower-Mr species, of which an Mr 88,000 form was the most active. Trypsin-initiated activation generated different Mr gelatinases of much lower specific activity. Activation was slowed but not prevented by the presence of the tissue inhibitor of metalloproteinases, TIMP. The activated gelatinase formed a stable complex (Mr 144,000) with TIMP, in a Zn2+- and Ca2+-dependent manner, and complex formation was inhibited by the presence of the substrate gelatin. Similar to the human granulocyte gelatinase, the organomercurial-activated pig enzyme degraded gelatin and TCA and TCB fragments of type I collagen, as well as elastin and types IV and V collagen. The degradation of type IV collagen was shown, both by polyacrylamide-gel electrophoresis and by electron microscopic analysis, to generate 3/4 and 1/4 fragments as described for mouse tumour type IV collagenase. Furthermore, an antiserum raised to mouse type IV collagenase recognized the pig granulocyte gelatinase. An antiserum to the pig polymorphonuclear leucocyte gelatinase recognized other high-Mr gelatinases, including those from human granulocytes, pig monocytes and rabbit connective tissue cells, but not the Mr 72,000 enzyme from connective tissue cells. These data suggest that there are two distinct major forms of gelatinolytic activity that also cause specific cleavage of type IV collagen. These enzymes are associated with a wide variety of normal connective tissue and haemopoietic cells, as well as many tumour cells.  相似文献   

11.
The abilities of dihydrolipoic acid (DHLA) to scavenge peroxynitrite (ONOO?), galvinoxyl radical, 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonate) cation radical (ABTS+?), and 2,2′‐diphenyl‐1‐picrylhydrazyl radical (DPPH) were higher than those of lipoic acid (LA). The effectiveness of DHLA to protect methyl linoleate against 2,2′‐azobis(2‐amidinopropane hydrochloride) (AAPH)‐induced oxidation was about 2.2‐fold higher than that of LA, and DHLA can retard the autoxidation of linoleic acid (LH) in the β‐carotene‐bleaching test. DHLA can also trap ~0.6 radicals in AAPH‐induced oxidation of LH. Moreover, DHLA can scavenge ~2.0 radicals in AAPH‐induced oxidation of DNA and AAPH‐induced hemolysis of erythrocytes, whereas LA can scavenge ~1.5 radicals at the same experimental conditions. DHLA can protect erythrocytes against hemin‐induced hemolysis, but accelerate the degradation of DNA in the presence of Cu2+. Therefore, the antioxidant capacity of –SH in DHLA is higher than S‐S in LA. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:216–223, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20378  相似文献   

12.
The simultaneous determination of alpha-lipoic acid (LA) and DHLA (reduced form of LA) was carried out by HPLC with fluorescence detection. DHLA in the sample was first labeled with ABD-F at room temperature for 10 min and then the LA was labeled with SBD-F at 50 degrees C for 1 h after conversion to DHLA using the reducing agent, TCEP. The resulting fluorophores, ABD-DHLA and SBD-DHLA, were separated by reversed-phase chromatography and detected at 510 nm (excitation at 380 nm). Both fluorophors were completely separated without any interference of endogenous thiols and disulfides in the sample and sensitively detected by fluorimetry. The proposed method was applied to the assay of the LA supplement and the determination in human plasma after the oral administration of LA tablets. The concentration (%) of LA in the tablet was reasonable to the stated amount. Furthermore, the result of a time course study in the plasma after the administration of LA did not differ from a previous report. Thus, the present method seems to be applicable to the simultaneous determination of LA and DHLA in various biological specimens.  相似文献   

13.
Human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA) produce the reactive oxidant hypochlorous acid (HOCl) and release the matrix metalloproteinases collagenase and gelatinase from secretory granules. We have investigated the stoichiometry of activation and inactivation of the two metalloproteinases with HOCl. HOCl activated purified neutrophil procollagenase at ratios between 10 and 40 mol of HOCl/mol enzyme, but caused inactivation at higher ratios. Maximum activation was about the same as that achieved by p-aminophenyl-mercuric acetate. However, less than a third of the total collagenase released from PMA-stimulated neutrophils was activated by coreleased HOCl and most of the activity was destroyed after 1 h of stimulation. These results indicate that the HOCl/enzyme ratio must fall within a narrow range for activation to occur. In contrast to collagenase, purified progelatinase underwent negligible activation (2.5 +/- 1.2%) at HOCl/enzyme molar ratios less than 30 and was destroyed at higher ratios. Likewise no active gelatinase could be detected in supernatant from PMA-stimulated cells and almost all of the proenzyme was destroyed by HOCl after 60 min stimulation. Our results illustrate that only collagenase can be activated by HOCl in vitro and that gelatinase is much more sensitive to inactivation. Since a precise HOCl/enzyme ratio is required for collagenase activation it is doubtful whether effective enzyme regulation by HOCl could occur in vivo where various HOCl scavengers are present.  相似文献   

14.
苯丙烯酸对黄瓜幼苗生理特性的影响   总被引:7,自引:2,他引:7  
采用基质栽培模拟实验,研究了不同浓度苯丙烯酸对黄瓜幼苗生理特性的影响.结果表明,苯丙烯酸对黄瓜幼苗的光合色素、光合速率、蒸腾速率和根系活力产生了抑制作用.当处理浓度为25μmol·L-1时,对类胡萝卜素产生抑制作用,对叶绿素a、叶绿素b为促进作用;当浓度为50μmol·L-1时,对光合速率、蒸腾速率和根系活力均产生显著的抑制作用(P<0.05),并随着处理浓度的增加抑制作用增强;当浓度为150μmol·L-1时,对叶绿素a、叶绿素b产生显著抑制作用(P<0.05);随着处理浓度的增加,对黄瓜上述生理特性的抑制作用增强.低浓度苯丙烯酸(25~50μmol·L-1)对幼苗根系活力的抑制强度不大,可在处理后期得到恢复;高浓度(100~150μmol·L-1)处理则表现出显著的抑制作用,随着处理时间延长,抑制作用增强(P<0.05).  相似文献   

15.
The aim of our work was to study (1) the antioxidant properties of lipoic acid (LA) and its reduced metabolite dihydrolipoic acid (DHLA) formed by reduction of LA and (2) the effects of treatment with LA and DHLA on (a) K(+) efflux from human red blood cells and (b) post-ischemic recovery and oxidative stress in isolated perfused rat hearts challenged with an ischemia-reperfusion (IR) sequence. In vitro, we used xanthine and xanthine oxidase to generate superoxide anion, which is not directly measurable by electron paramagnetic resonance (EPR), but specifically oxidizes the spin probe CPH into an EPR-detectable long lasting CP(*) nitroxide radical. While 5 mM of LA was ineffective in reducing the kinetics of CP(*) nitroxide formation, DHLA was shown to lessen this rate in a dose-dependent manner and at 30 mM was even more efficient than 300 UI/ml SOD. These results are in agreement with the fact that DHLA is able to directly scavenge superoxide anion. Red cells are a good model to investigate oxidative damage in biological membranes; hence, we used a suspension of erythrocytes incubated with 2,2(')-azobis(2-amidinopropane) hydrochloride (AAPH) which generates in vitro free radicals. DHLA provided more effective protection of red cells membranes than LA; DHLA was comparable to Trolox for its antioxidant potency. In vivo, treatment of rats (50 mg/kg/day i.p. for 7 days) with LA induced a slight increase in coronary flow (CF) in isolated perfused hearts, after 30 min of global total ischemia. This effect was not associated with an improvement in contractile function and reduction of myocardial oxidative stress. In conclusion, because of their ability to scavenge free radicals, LA and to an even greater degree DHLA were able to protect the membranes of red blood cells. This finding suggests that LA and DHLA might be useful in the treatment of diseases associated with oxidative stress such as diabetes.  相似文献   

16.
Gossypol inhibits the potential activity of the proenzyme form of human seminal plasma acidic proteinase, but has no effect on the active enzyme under the conditions tested. Inhibition of proenzyme is rapid and pH-dependent: 50% inhibition can be observed at gossypol concentrations of approx. 1.5 X 10(-5) M. SDS-polyacrylamide gel electrophoresis indicates that treatment of proenzyme with gossypol prevents the formation of active enzyme that normally occurs on acidification. Determination of free amino groups with 1-fluoro-2,4-dinitrobenzene suggests that gossypol reacts with 7.8 out of the 11.0 lysine residues in proenzyme: such a reaction could interfere with the activation process.  相似文献   

17.
The effects of orally ingested dihomo-gamma-linolenic acid (DHLA), the natural biosynthetic precursor of prostaglandin E1 (PGE1), were assessed in human volunteers. Single doses of DHLA (0.1--2g) increased the proportion of DHLA relative to arachidonic acid in plasma and platelets and also increased the ex-vivo capacity of platelets to produce PGE1 and PGE2. More pronounced effects were observed during sustained treatment (five days to four weeks) when DHLA also accumulated in red cell membranes. These biochemical changes were accompanied by potentially antithrombotic changes in haemostatic function. The most common effect, which was consistently detected after 0.1-g single doses of DHLA or its methyl ester, was a decrease in plasma heparin-neutralising activity. Inhibition of platelet aggregation induced by adenosine diphosphate was also detected, though this was generally less pronounced. Sustained treatment in one subject also produced definite inhibition of ristocetin-induced platelet aggregation. There was only one possible adverse effect--a transient cough in a subject with a history of asthma. DHLA therefore seems to have considerable potential as an agent for preventing and treating human thromboembolic disease.  相似文献   

18.
1. Albumin activates human liver acid alpha-glucosidase (alpha-D-glucoside hydrolase, EC 3.2.1.20). From the Arrhenius plot, pH-dependence and Lineweaver-Burk plots it can be concluded that this activation is not only due to stabilisation of the enzyme, but also influences the enzymatic activity. It is proposed that for optimal functioning human liver acid alpha-glucosidase needs a protein environment. 2. Glycogen has a competitive inhibitory effect on the hydrolysis of 4-methylumbelliferyl-alpha-D-glucopyranoside, in contrast to maltose which exhibits a non-competitive type of inhibition. It is concluded that two catalytic sites exist, one for glycogen and one for maltose, while both sites influence each other. With glycogen as substrate a break in the Arrhenius plot is found. This is not the case when maltose is used as substrate. 3. The effect of antibody raised against human liver acid alpha-glucosidase on the activity of human liver acid alpha-glucosidase is studied. No corss-reacting material could be demonstrated in the liver of a patient with glycogen storage disease Type II (M. Pompe, acid alpha-glucosidase deficiency).  相似文献   

19.
The ability of the sulfur-containing compounds glutathione (GSH), glutathione disulphide (GSSG), S-methylglutathione (GSMe), lipoic acid (LA), and dihydrolipoic acid (DHLA) to protect against hypochlorous acid (HOCl)-mediated damage and peroxynitrite (ONOOH)-induced damage has been compared. Protective activity was assessed in competition assays by monitoring several detectors, i.e. dihydrorhodamine-123 (DHR-123) oxidation, alpha(1)-antiproteinase (alpha(1)-AP) inactivation, and glutathione S-transferase P1-1 (GST-P1-1) inactivation. In addition, nitration of tyrosine was measured to assess protection of the sulfur-containing compounds against ONOOH. For protection against HOCl, the efficacy of the antioxidant was controlled by the ratio of the reaction rates of the antioxidant and the detector molecule with the oxidant. The rank order of the activity of the antioxidants (GSH > DHLA approximately LA approximately GSMe > GSSG) appeared to be independent of the detector used. However, the rank order of the antioxidants against ONOOH-induced damage is strongly dependent on the detector. LA was 40 times less active than GSH in the inhibition of ONOOH-induced DHR-123 oxidation, whereas LA was 20 times more active than GSH in preventing the inhibition of GST-P1-1 by ONOOH. This points to different molecular mechanisms of ONOOH damage to DHR-123 compared with ONOOH damage to GST-P1-1. LA is a poor antioxidant in protecting against the form of ONOOH damage involved in DHR-123 oxidation. In the form of ONOOH toxicity involved in GST-P1-1 inhibition, LA is the most potent sulfur-containing antioxidant in our series. It is proposed that an intermediate product in which both sulfur atoms of LA have reacted is involved in the reaction of ONOOH with LA. The high potency of LA to protect GST-P1-1 against ONOOH might be of therapeutic interest.  相似文献   

20.
We have isolated a novel 75-kDa gelatinase from a chicken macrophage cell line, HD11. Biochemical and immunological characterization of the purified enzyme demonstrated that it is distinct from the chicken 72-kDa gelatinase A (MMP-2). The enzyme is capable of specific gelatin binding and rapid gelatin cleavage. Incubation with an organomercurial compound (p-aminophenylmercuric acetate) induces proteolytic processing and activation of this enzyme, and the resultant gelatinolytic activity is sensitive to both zinc chelators and tissue inhibitors of metalloproteinases. A full-length cDNA for the enzyme has been cloned, and sequence analysis demonstrated that the enzyme possesses the characteristic multidomain structure of an MMP gelatinase including a cysteine switch prodomain, three fibronectin type II repeats, a catalytic zinc binding region, and a hemopexin-like domain. The 75-kDa gelatinase is produced by phorbol ester-treated chicken bone marrow cells, monocytes, and polymorphonuclear leukocytes, cell types that charac- teristically produce the 92-kDa mammalian gelatinase B (MMP-9). The absence of a 90-110-kDa gelatinase in these cell types indicates that the 75-kDa gelatinase is likely the avian counterpart of gelatinase B. However, the protein is only 59% identical to human gelatinase B, whereas all previously cloned chicken MMP homologues are 75-90% identical to their human counterparts. In addition, the new 75-kDa chicken gelatinase lacks the type V collagen domain that is found in all mammalian gelatinase Bs. Furthermore, the secreted enzyme appears structurally distinct from known gelatinase Bs and the activated enzyme can cleave fibronectin, which is not a substrate for mammalian gelatinase B. Thus the results of this study indicate that a second MMP gelatinase exists in chickens, and although it is MMP-9/gelatinase B-like in its overall domain structure and expression pattern, it appears to be biochemically divergent from mammalian gelatinase B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号