首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.  相似文献   

2.
Rasmussen TK  Krink T 《Bio Systems》2003,72(1-2):5-17
Multiple sequence alignment (MSA) is one of the basic problems in computational biology. Realistic problem instances of MSA are computationally intractable for exact algorithms. One way to tackle MSA is to use Hidden Markov Models (HMMs), which are known to be very powerful in the related problem domain of speech recognition. However, the training of HMMs is computationally hard and there is no known exact method that can guarantee optimal training within reasonable computing time. Perhaps the most powerful training method is the Baum-Welch algorithm, which is fast, but bears the problem of stagnation at local optima. In the study reported in this paper, we used a hybrid algorithm combining particle swarm optimization with evolutionary algorithms to train HMMs for the alignment of protein sequences. Our experiments show that our approach yields better alignments for a set of benchmark protein sequences than the most commonly applied HMM training methods, such as Baum-Welch and Simulated Annealing.  相似文献   

3.
The standard method of applying hidden Markov models to biological problems is to find a Viterbi (maximal weight) path through the HMM graph. The Viterbi algorithm reduces the problem of finding the most likely hidden state sequence that explains given observations, to a dynamic programming problem for corresponding directed acyclic graphs. For example, in the gene finding application, the HMM is used to find the most likely underlying gene structure given a DNA sequence. In this note we discuss the applications of sampling methods for HMMs. The standard sampling algorithm for HMMs is a variant of the common forward-backward and backtrack algorithms, and has already been applied in the context of Gibbs sampling methods. Nevetheless, the practice of sampling state paths from HMMs does not seem to have been widely adopted, and important applications have been overlooked. We show how sampling can be used for finding alternative splicings for genes, including alternative splicings that are conserved between genes from related organisms. We also show how sampling from the posterior distribution is a natural way to compute probabilities for predicted exons and gene structures being correct under the assumed model. Finally, we describe a new memory efficient sampling algorithm for certain classes of HMMs which provides a practical sampling alternative to the Hirschberg algorithm for optimal alignment. The ideas presented have applications not only to gene finding and HMMs but more generally to stochastic context free grammars and RNA structure prediction.  相似文献   

4.
Hidden Markov models (HMMs) have been extensively used in biological sequence analysis. In this paper, we give a tutorial review of HMMs and their applications in a variety of problems in molecular biology. We especially focus on three types of HMMs: the profile-HMMs, pair-HMMs, and context-sensitive HMMs. We show how these HMMs can be used to solve various sequence analysis problems, such as pairwise and multiple sequence alignments, gene annotation, classification, similarity search, and many others.Key Words: Hidden Markov model (HMM), pair-HMM, profile-HMM, context-sensitive HMM (csHMM), profile-csHMM, sequence analysis.  相似文献   

5.
现有蛋白质亚细胞定位方法针对水溶性蛋白质而设计,对跨膜蛋白并不适用。而专门的跨膜拓扑预测器,又不是为亚细胞定位而设计的。文章改进了跨膜拓扑预测器TMPHMMLoc的模型结构,设计了一个新的二阶隐马尔可夫模型;采用推广到二阶模型的Baum-Welch算法估计模型参数,并把将各个亚细胞位置建立的模型整合为一个预测器。数据集上测试结果表明,此方法性能显著优于针对可溶性蛋白设计的支持向量机方法和模糊k最邻近方法,也优于TMPHMMLoc中提出的隐马尔可夫模型方法,是一个有效的跨膜蛋白亚细胞定位预测方法。  相似文献   

6.
Hidden Markov models (HMMs) have been successfully applied to a variety of problems in molecular biology, ranging from alignment problems to gene finding and annotation. Alignment problems can be solved with pair HMMs, while gene finding programs rely on generalized HMMs in order to model exon lengths. In this paper, we introduce the generalized pair HMM (GPHMM), which is an extension of both pair and generalized HMMs. We show how GPHMMs, in conjunction with approximate alignments, can be used for cross-species gene finding and describe applications to DNA-cDNA and DNA-protein alignment. GPHMMs provide a unifying and probabilistically sound theory for modeling these problems.  相似文献   

7.

Background  

The prediction of the secondary structure of proteins is one of the most studied problems in bioinformatics. Despite their success in many problems of biological sequence analysis, Hidden Markov Models (HMMs) have not been used much for this problem, as the complexity of the task makes manual design of HMMs difficult. Therefore, we have developed a method for evolving the structure of HMMs automatically, using Genetic Algorithms (GAs).  相似文献   

8.

Background:  

Baum-Welch training is an expectation-maximisation algorithm for training the emission and transition probabilities of hidden Markov models in a fully automated way. It can be employed as long as a training set of annotated sequences is known, and provides a rigorous way to derive parameter values which are guaranteed to be at least locally optimal. For complex hidden Markov models such as pair hidden Markov models and very long training sequences, even the most efficient algorithms for Baum-Welch training are currently too memory-consuming. This has so far effectively prevented the automatic parameter training of hidden Markov models that are currently used for biological sequence analyses.  相似文献   

9.
Hidden Markov models (HMMs) are effective tools to detect series of statistically homogeneous structures, but they are not well suited to analyse complex structures. For example, the duration of stay in a state of a HMM must follow a geometric law. Numerous other methodological difficulties are encountered when using HMMs to segregate genes from transposons or retroviruses, or to determine the isochore classes of genes. The aim of this paper is to analyse these methodological difficulties, and to suggest new tools for the exploration of genome data. We show that HMMs can be used to analyse complex gene structures with bell-shaped length distribution by using convolution of geometric distributions. Thus, we have introduced macros-states to model the distributions of the lengths of the regions. Our study shows that simple HMM could be used to model the isochore organisation of the mouse genome. This potential use of markovian models to help in data exploration has been underestimated until now.  相似文献   

10.
Hidden Markov models (HMM) are introduced for the offline classification of single-trail EEG data in a brain-computer-interface (BCI). The HMMs are used to classify Hjorth parameters calculated from bipolar EEG data, recorded during the imagination of a left or right hand movement. The effects of different types of HMMs on the recognition rate are discussed. Furthermore a comparison of the results achieved with the linear discriminant (LD) and the HMM, is presented.  相似文献   

11.
HMMSPECTR is a tool for finding putative structural homologs for proteins with known primary sequences. HMMSPECTR contains four major components: a data warehouse with the hidden Markov models (HMM) and alignment libraries; a search program which compares the initial protein sequences with the libraries of HMMs; a secondary structure prediction and comparison program; and a dominant protein selection program that prepares the set of 10-15 "best" proteins from the chosen HMMs. The data warehouse contains four libraries of HMMs. The first two libraries were constructed using different HHM preparation options of the HAMMER program. The third library contains parts ("partial HMM") of initial alignments. The fourth library contains trained HMMs. We tested our program against all of the protein targets proposed in the CASP4 competition. The data warehouse included libraries of structural alignments and HMMs constructed on the basis of proteins publicly available in the Protein Data Bank before the CASP4 meeting. The newest fully automated versions of HMMSPECTR 1.02 and 1.02ss produced better results than the best result reported at CASP4 either by r.m.s.d. or by length (or both) in 64% (HMMSPECTR 1.02) and 79% (HMMSPECTR 1.02ss) of the cases. The improvement is most notable for the targets with complexity 4 (difficult fold recognition cases).  相似文献   

12.
As hidden Markov models (HMMs) become increasingly more important in the analysis of biological sequences, so too have databases of HMMs expanded in size, number and importance. While the standard paradigm a short while ago was the analysis of one or a few sequences at a time, it has now become standard procedure to submit an entire microbial genome. In the future, it will be common to submit large groups of completed genomes to run simultaneously against a dozen public databases and any number of internally developed targets. This paper looks at some of the readily available HMM (or HMM-like) algorithms and several publicly available HMM databases, and outlines methods by which the reader may develop custom HMM targets.  相似文献   

13.
Hidden Markov models (HMMs) are one of various methods that have been applied to prediction of major histo-compatibility complex (MHC) binding peptide. In terms of model topology, a fully-connected HMM (fcHMM) has the greatest potential to predict binders, at the cost of intensive computation. While a profile HMM (pHMM) performs dramatically fewer computations, it potentially merges overlapping patterns into one which results in some patterns being missed. In a profile HMM a state corresponds to a position on a peptide while in an fcHMM a state has no specific biological meaning. This work proposes optimally-connected HMMs (ocHMMs), which do not merge overlapping patterns and yet, by performing topological reductions, a model's connectivity is greatly reduced from an fcHMM. The parameters of ocHMMs are initialized using a novel amino acid grouping approach called "multiple property grouping." Each group represents a state in an ocHMM. The proposed ocHMMs are compared to a pHMM implementation using HMMER, based on performance tests on two MHC alleles HLA (Human Leukocyte Antigen)-A*0201 and HLA-B*3501. The results show that the heuristic approaches can be adjusted to make an ocHMM achieve higher predictive accuracy than HMMER. Hence, such obtained ocHMMs are worthy of trial for predicting MHC-binding peptides.  相似文献   

14.
SUMMARY: Protein name extraction is an important step in mining biological literature. We describe two new methods for this task: semiCRFs and dictionary HMMs. SemiCRFs are a recently-proposed extension to conditional random fields (CRFs) that enables more effective use of dictionary information as features. Dictionary HMMs are a technique in which a dictionary is converted to a large HMM that recognizes phrases from the dictionary, as well as variations of these phrases. Standard training methods for HMMs can be used to learn which variants should be recognized. We compared the performance of our new approaches with that of Maximum Entropy (MaxEnt) and normal CRFs on three datasets, and improvement was obtained for all four methods over the best published results for two of the datasets. CRFs and semiCRFs achieved the highest overall performance according to the widely-used F-measure, while the dictionary HMMs performed the best at finding entities that actually appear in the dictionary-the measure of most interest in our intended application. AVAILABILITY: Dictionary HMMs were implemented in Java. Algorithms are available through an information extraction package MINORTHIRD on http://minorthird.sourceforge.net  相似文献   

15.

Background  

Profile Hidden Markov Models (HMM) are statistical representations of protein families derived from patterns of sequence conservation in multiple alignments and have been used in identifying remote homologues with considerable success. These conservation patterns arise from fold specific signals, shared across multiple families, and function specific signals unique to the families. The availability of sequences pre-classified according to their function permits the use of negative training sequences to improve the specificity of the HMM, both by optimizing the threshold cutoff and by modifying emission probabilities to minimize the influence of fold-specific signals. A protocol to generate family specific HMMs is described that first constructs a profile HMM from an alignment of the family's sequences and then uses this model to identify sequences belonging to other classes that score above the default threshold (false positives). Ten-fold cross validation is used to optimise the discrimination threshold score for the model. The advent of fast multiple alignment methods enables the use of the profile alignments to align the true and false positive sequences, and the resulting alignments are used to modify the emission probabilities in the original model.  相似文献   

16.
Profile hidden Markov models (HMMs) are used to model protein families and for detecting evolutionary relationships between proteins. Such a profile HMM is typically constructed from a multiple alignment of a set of related sequences. Transition probability parameters in an HMM are used to model insertions and deletions in the alignment. We show here that taking into account unrelated sequences when estimating the transition probability parameters helps to construct more discriminative models for the global/local alignment mode. After normal HMM training, a simple heuristic is employed that adjusts the transition probabilities between match and delete states according to observed transitions in the training set relative to the unrelated (noise) set. The method is called adaptive transition probabilities (ATP) and is based on the HMMER package implementation. It was benchmarked in two remote homology tests based on the Pfam and the SCOP classifications. Compared to the HMMER default procedure, the rate of misclassification was reduced significantly in both tests and across all levels of error rate.  相似文献   

17.
Hidden Markov models (HMMs) are a class of stochastic models that have proven to be powerful tools for the analysis of molecular sequence data. A hidden Markov model can be viewed as a black box that generates sequences of observations. The unobservable internal state of the box is stochastic and is determined by a finite state Markov chain. The observable output is stochastic with distribution determined by the state of the hidden Markov chain. We present a Bayesian solution to the problem of restoring the sequence of states visited by the hidden Markov chain from a given sequence of observed outputs. Our approach is based on a Monte Carlo Markov chain algorithm that allows us to draw samples from the full posterior distribution of the hidden Markov chain paths. The problem of estimating the probability of individual paths and the associated Monte Carlo error of these estimates is addressed. The method is illustrated by considering a problem of DNA sequence multiple alignment. The special structure for the hidden Markov model used in the sequence alignment problem is considered in detail. In conclusion, we discuss certain interesting aspects of biological sequence alignments that become accessible through the Bayesian approach to HMM restoration.  相似文献   

18.
Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first‐ and second‐order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence‐based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
This article reviews recent work towards modelling protein folding pathways using a bioinformatics approach. Statistical models have been developed for sequence-structure correlations in proteins at five levels of structural complexity: (i) short motifs; (ii) extended motifs; (iii) nonlocal pairs of motifs; (iv) 3-dimensional arrangements of multiple motifs; and (v) global structural homology. We review statistical models, including sequence profiles, hidden Markov models (HMMs) and interaction potentials, for the first four levels of structural detail. The I-sites (folding Initiation sites) Library models short local structure motifs. Each succeeding level has a statistical model, as follows: HMMSTR (HMM for STRucture) is an HMM for extended motifs; HMMSTR-CM (Contact Maps) is a model for pairwise interactions between motifs; and SCALI-HMM (HMMs for Structural Core ALIgnments) is a set of HMMs for the spatial arrangements of motifs. The parallels between the statistical models and theoretical models for folding pathways are discussed in this article; however, global sequence models are not discussed because they have been extensively reviewed elsewhere. The data used and algorithms presented in this article are available at http://www.bioinfo.rpi.edu/~bystrc/ (click on "servers" or "downloads") or by request to bystrc@rpi.edu .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号