首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Semisynthetic des-(B27-B30)-insulins with modified B26-tyrosine   总被引:1,自引:0,他引:1  
Semisynthetic des-(B27-B30)-insulins containing modified B26-tyrosine residues were prepared to refine the understanding of the importance of position B26 with regard to biological and structural properties of the hormone. The following shortened insulin analogues were synthesized by trypsin-catalysed peptide-bond formation between the C-terminal amino acid ArgB22 of des-(B23-B30)-insulin and synthetic tetrapeptides as amino components: des-(B27-B30)-insulin, des-(B27-B30)-insulin-B26-methyl ester, -B26-carboxamide with varying C-terminal hydrophobicity of the B-chain, and [Tyr(NH2)B26]-, [Tyr(NO2)B26]-, [Tyr(I2)B26]-, [D-TyrB26]des-(B27-B30)-insulin-B26-carboxamide containing non-proteinogenic amino acids in position B26. Starting from insulin and an excess of synthetic Gly-Phe-Phe-Tyr-OMe as nucleophile, des-(B27-B30)-insulin-B26-methyl ester--the formal transpeptidation product at ArgB22--was formed in one step. Biological in vitro properties (binding to cultured human IM-9 lymphocytes, relative lipogenic potency in isolated rat adipocytes) of all semisynthetic analogues are reported, ranging from slightly decreased to two-fold receptor affinity and nearly three-fold biopotency relative to insulin. If the C-terminal tetrapeptide B27-B30 is removed, full relative insulin activity is still preserved, while the shortening results in the loss of ability to associate in solution. Only after carboxamidation or methyl esterification of TyrB26 the self-association typical of native insulin can be observed, and the CD-spectral effects in the near UV spectrum related to association and hexamerization of the native hormone are qualitatively reestablished. The results of this investigation underline the importance of position B26 to the modulation of hormonal properties and solution structure of the shortened insulins.  相似文献   

3.
Syntheses of peptides with the sequences Gly-Phe, Gly-Phe-Phe, Arg-Gly-Phe and Arg-Gly-Phe-Phe are described. They were performed with the free acids, methyl esters and caramides. The peptides correspond partially or directly to the insulin sequence B 22 - 25 (Arg-Gly-Phe-Phe), the tetrapeptide amide or tetrapeptide methyl ester of which shows insulin-like activity (l.c.[1,2]). For testing the structural specificity of the arginyl residue, the following peptides were also synthesised: NG-NO2-Arg-Gly-Phe-Phe-NH2 and -OMe, Orn-Gly-Phe-Phe-NH2 and Cit-Gly-Phe-Phe--NH2. In connection with the above, the syntheses of the new derivatives Nalpha,Ndelta-Z2-L-ornithine p-nitrophenyl ester and N-Boc-L-citrulline p-nitrophenyl ester are described. All peptides were synthesised conventionally.  相似文献   

4.
Insulin was adsorbed to a strongly acidic ion exchanger and incubated with pepsin. The digestion of the matrix-bound insulin was found to be restricted to the cleavage of the peptide bond between phenylalanine-B25 and tyrosine-B26. Factionation of the reaction products was achieved by gel filtrationon Sephadex G-50 at pH 8 where des-pentapeptide(B26-30)-insulin does not aggregate. Another way to purify this compound was ion-exchange chromatography, which was easy due to the loss of one positive charge on the modified insulin. Crystallization could be achieved in a phenol-containing buffer. Des-pentapeptide(B26-30)-insulin was found to be molecularly uniform by electrophoresis at pH 2.2 and 8.6, thin-layer chromatography, performic acid oxidation, end group analysis and amino acid analysis. The CD-spectrum indicated conformational changes compared to insulin. The biological activity was considerably reduced: fat cell assay 20%, blood sugar depression 30%.  相似文献   

5.
The bifunctional reagents, oxalyl-(Met-ONp)2 and malonyl-(Met-ONp)2 have been prepared and investigated as reversible cross-linking reagents for insulin and model compounds. The removal of the cross-linking residues was demonstrated by the cyanogen bromide cleavage of oxalyl-(Met-Phe-OMe)2 and malonyl-(Met-Phe-OMe)2. Zinc-insulin reacted with a molar equivalent of oxalyl-(Met-ONp)2 or malonyl-(Met-ONp)2 in presence of excess triethylamine to yield oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin, respectively. In these derivatives the N-terminal phenylalanine (B1 residue) was free. Thus the cross-link was between A1 and B29 residues in insulin. All three disulfide bonds of these insulin derivatives undergo reduction with tributylphosphine to give six sulfhydryls. Air-oxidation of reduced oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin in 0.05 M disodium phosphate, pH 9.5, yielded products which were indistinguishable from oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin respectively, as measured by physicochemical and biological methods. Cyanogen bromide cleavage of reduced and reoxidized malonyl-(Met)2-insulin in 70% formic acid regenerated insulin quantitatively, but only 40% of insulin was determined from similar treatment of oxalyl-(Met)2-insulin. The regenerated insulins exhibited the biological activity of native insulin. These studies strongly suggest that disulfide bonds formed during oxidation of reduced oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin are identical to those found in insulin.  相似文献   

6.
Unprotected porcine desoctapeptide(B23-30) insulin (DOPI) and the synthetic Gly-Phe-Phe were used as substrates for the trypsin-catalyzed synthesis of despentapeptide(B26-30) insulin (DPPI). The DPPI synthesis was accompanied by a moderate oligomerization and by the formation of a side produce which was identified as a DOPI derivative having an extra peptide bond between the Gly(A1) and Arg(B22) and which was named des(23-63) proinsulin (1). Despite side reactions, the conditions were found where the overall DPPI yields were comparable to those obtained via di-Boc DOPI, and these procedures were faster and simpler since the Boc protection and deprotection steps were omitted. The reaction progress was directly monitored by HPLC.  相似文献   

7.
The synthesis of the C-terminal nonapeptide of bovine insulin B-chain is described. 4-(Bromomethyl)-3-nitrobenzoylglycyl-poly(ethylene glycol) Mr = 15,000) was used as soluble support. The C-terminal alanine was first converted to Boc-Ala-O-(2-nitro-4-carboxy) benzyl ester which was then coupled to Gly-PEG via DCC activation. The synthesis was performed using the in situ symmetrical anhydride coupling method. Cleavage of the protected peptide from the polymeric support was achieved by photolysis. The product was then chromatographed on a column of Sephadex LH-20. All the protecting groups of a sample were removed with liquid HF and the unprotected crude peptide was purified by ion-exchange chromatography on CM-Sephadex to obtain an electrophoretically and chromatographically pure peptide. The identity of this peptide was confirmed by field desorption mass spectrometry and amino acid analysis. Circular dichroism measurement suggests that the free nonapeptide possesses a disordered conformation. The nonapeptide was tested for the racemization of the individual amino acids by gas chromatography and the results showed that no residue was significantly racemized.  相似文献   

8.
An analogue of porcine insulin which differs from the native molecule in that the amino-acid residue B22-L-arginine is replaced by its D-enantiomer has been synthesized. The [D ArgB22]B-chain was synthesized by the segment condensation method and purified as the di-S-sulfonate by ion exchange chromatoggraphy on SP-Sephadex at pH 3.5. Combination with native porcine sulfhydryl A-chain gave [DArgB22]insulin which was purified by ion exchange chromatography on SP-Sephadex at pH 4.5 with a linear NaCl gradient. The biological activity of this analogue as measured by glucose oxidation in rat epididymal adipocytes was 2%. Thymidine incorporation into DNA of human fibroblast was 16%. The immunoreactivity using antipork insulin antibody in a double antibody immunoassay was 4%. The receptor-binding affinity as measured by radioreceptor assays was 2% with cultured human fibroblasts and 1% with rat adipocytes. These results suggest that the L-configuration at B22-arginine is essential for retaining the biological, immunological and receptor-binding properties of the hormone.  相似文献   

9.
Two methods are described for the preparation of NalphaB1,Nepsilon29-Boc2-insulin from Nalpha A1-trifluoroacetyl-insulin and Nalpha A1-citraconyl-insulin in 80 - 90% and 65% yields, respectively. Removal of the Boc protections afforded the fully active insulin. Application of this derivative was demonstrated by the preparations of des-GlyA1-insulin and [A1-guanidinoacetyl]insulin. The former compount exhibited 2% activity in the in vitro free fat cell assay and the latter 88 +/- 5% while NalphaB1-NepsilonB29-Boc2-insulin showed 45 +/- 3% activity only.  相似文献   

10.
The insulin gene mutation c.137G>A (R46Q), which changes an arginine at the B22 position of the mature hormone to glutamine, causes the monogenic diabetes variant maturity-onset diabetes of the young (MODY). In MODY patients, this mutation is heterozygous, and both mutant and wild-type (WT) human insulin are produced simultaneously. However, the patients often depend on administration of exogenous insulin. In this study, we chemically synthesized the MODY mutant [GlnB22]-insulin and characterized its biological and structural properties. The chemical synthesis of this insulin analogue revealed that its folding ability is severely impaired. In vitro and in vivo tests showed that its binding affinity and biological activity are reduced (both approximately 20% that of human insulin). Comparison of the solution structure of [GlnB22]-insulin with the solution structure of native human insulin revealed that the most significant structural effect of the mutation is distortion of the B20-B23 β-turn, leading to liberation of the B chain C-terminus from the protein core. The distortion of the B20-B23 β-turn is caused by the extended conformational freedom of the GlnB22 side chain, which is no longer anchored in a hydrogen bonding network like the native ArgB22. The partially disordered [GlnB22]-insulin structure appears to be one reason for the reduced binding potency of this mutant and may also be responsible for its low folding efficiency in vivo. The altered orientation and flexibility of the B20-B23 β-turn may interfere with the formation of disulfide bonds in proinsulin bearing the R46Q (GlnB22) mutation. This may also have a negative effect on the WT proinsulin simultaneously biosynthesized in β-cells and therefore play a major role in the development of MODY in patients producing [GlnB22]-insulin.  相似文献   

11.
[B29-Arginine]porcine insulin was prepared from des-(B23-30)-insulin and synthetic octapeptide with the aid of trypsin. Comparison of reaction rates in trypsin-catalysed transamidation of this compound and porcine insulin with threonine ether ester showed that this reaction is determined only by conformational effects and structural features of amino acids leaving from and entering into B30, not by the structure and the pKa value of the basic amino acid in B29.  相似文献   

12.
The trypsin-catalyzed coupling of bovine (Boc)2-desoctapeptide (B23-B30)-insulin with synthetic octapeptides, H-Gly-X2-X3-X4-Thr-Pro-Lys(Boc)-Thr-OH (X2 = Phe or Ala, X3 = Phe or Ala, X4 = Tyr or Ala), followed by deprotection and purification produced the [AlaB24, ThrB30]-, [AlaB25, ThrB30]-, and [AlaB26, ThrB30]-analogs of bovine insulin in yields of 32, 35, and 32%, respectively. The biological activity of these analogs decreased in the order, normal insulin ([ThrB30]-bovine insulin) = AlaB26-insulin > AlaB25-insulin > AlaB24-insulin, as assayed for receptor binding and some other biological effects, in contrast with the corresponding Leu-analogs of human insulin, in which the activity decreased in the order, normal insulin > LeuB24-insulin > LeuB25-insulin. The affinity to insulin antibodies greatly diminished in both AlaB24-insulin and LeuB24-insulin but not in the B25-substituted analogs. The CD spectra of the Leu- and the Ala-analogs were compared with those of normal insulins to show that no apparent correlation seems to exist between the decrease in biological activity and the conformational changes observed in solution. The effects of organic solvents on the peptide-bond equilibrium and on the stability of trypsin are also discussed.  相似文献   

13.
B22 Glu Des-B30 Insulin: A Novel Monomeric Insulin   总被引:1,自引:0,他引:1  
Studies on monomeric insulin with reduced self-association are important in the development of insulin pharmaceutical preparations with rapid hypoglycemic action on patients with diabetes. Here we report a novel monomeric insulin, B22 Glu des-B30 insulin, prepared from a single chain insulin precursor with B22 Arg mutated to Glu, which was expressed in Pichia pastoris and converted to B22 Glu des-B30 insulin by tryptic digestion. It still retains 50% of the in vivo biological activity of porcine insulin and does not form a dimer even at a concentration of 10 mg/ml, showing that B22 Glu plays a key role in reducing the self- association of the insulin molecule without greatly reducing its biological activity. This novel monomeric insulin might have potential applications in the clinic.  相似文献   

14.
[SerB24]-insulin, the second structurally abnormal mutant insulin, and [SerB25]-insulin were semisynthesized and were studied for receptor binding and biological activity. Receptor binding and biological activity determined by its ability to increase 2-deoxy-glucose uptake in rat adipocytes were 0.7-3% of native insulin for [SerB24]-insulin and 3-8% for [SerB25]-insulin. Negative cooperative effect of these analogues was also markedly decreased. Immunoreactivity of [SerB24]-insulin was decreased whereas that of [SerB25]-insulin was normal. Markedly decreased receptor binding of [SerB24]-insulin appeared to be due to substitution of hydrophobic amino acid, Phe, with a polar amino acid, Ser, at B24.  相似文献   

15.
Semisynthetic analogues of insulin were prepared from derivatives of desoctapeptide-(B23-30)-insulin (DOI). A1, B1-(Boc)2-DOI (di-Boc-DOI) was converted to A1, B1-(Boc)2-DOI-B22-phenylhydrazide (di-Boc-DOI-NHNH-C6H5) by the trypsin-catalyzed addition of phenylhydrazine in aqueous organic solvents at pH 6.5 [Canova-Davis, E., & Carpenter, F. H. (1981) Biochemistry 20, 7053-7058]. Treatment of di-Boc-DOI-NHNH-C6H5 with BNPS-skatole produced the phenyldiimide. The latter was coupled with a variety of protected peptides that, after removal of protecting groups, yielded the following compounds whose biological activities were compared to that of insulin in binding, in stimulation of hexose transport (), and in the stimulation of lipogenesis [)), in terms of percent of insulin activity, all in the isolated epididymal fat cell: di-Boc-DOI 0.2, (0.1), [0.2]; di-Boc-DOI-NHNH-C6H5 0.5, (0.2), [0.5]; DOI 0.2, (0.2), [0.1]; DOI-(Gly)B23 0.2, (0.2), [0.1]; DOI-(Gly-Phe)B23-24 6.3, (6.3), [8.0]; DOI-(Gly-Phe-Phe)B23-25 17.0, (25.6), [24.7]; DOI-(Gly-Phe-Phe-Tyr)B23-26 59.0, (50.0), [69.0]. The semisynthetic derivatives represent a stepwise readdition of the aromatic residues near the C terminus of the B chain. A given analogue demonstrated comparable activity in all three biological assays. The results indicate that the stepwise addition of aromatic residues to the B-chain C terminus of DOI produces an increase in insulin-like activity. The biological activity of DOI-(Gly-Phe-Phe-Tyr)B23-26, the derivative in which the aromatic region has been completely reassembled, is the same order of magnitude as that of insulin.  相似文献   

16.
本文报道了[B10,22-Asp,B25-Tyr-NH2]-去B链羧端五肽胰岛素的制备及其生物活性。结果表明,这一类似物的生物活力比去五肽胰岛素(DPI)的活力高一倍,但却比Gerald所报道的[B10-Asp,B25-Tyr-NH_2]-DPI的活力低很多,说明后者的高活性可能依赖于分子中B22-Arg的存在。  相似文献   

17.
We report the synthesis and biological evaluation of five insulin analogues in which one or both of the B-chain tyrosine residues have been substituted. [B16 Phe]insulin and [B16 Trp]insulin display a very modest reduction in potency (c. 65%) relative to porcine insulin; [B26 Phe]insulin is less active (30–50%), and the doubly substituted [B16 Phe, B26 Phe]insulin displays still lower potency (c. 35%). The further substitution of Asp for B10 His in [B16 Phe, B26 Phe]insulin raises its activity to approximately twofold greater than natural insulin, an increase of approximately fivefold over the parent compound. We conclude that the bulk and/or aromaticity of the amino acid residue at position B16, but not its hydrogen-bonding capacity, contributes to the biological activity of the hormone. We further conclude that hydrogen-bonding capacity or special side-chain packing characteristics are required at the B26 position for insulin to display high biological activity.  相似文献   

18.
We have used a preparation of soluble human insulin receptor ectodomain and a novel photoreactive, biotinylated derivative of insulin (4-azidosalicyloyl(B1-biocytinyl-B2-lysine)-insulin) to identify a new hormone contact site within the extracellular domain of the insulin receptor. The ectodomain was photoaffinity-labeled and digested to completion with trypsin, and the resulting tryptic fragment was purified by either HPLC or by streptavidin-affinity chromatography. The amino terminus of the fragment was identified as Gly390 within the alpha-subunit. These results suggest that residues that are carboxyl-terminal to the cysteine-rich domain, in addition to previously identified regions within the amino terminus of the alpha-subunit, contribute to the insulin binding site. The implications of these results for the de novo folding of the insulin receptor to constitute the hormone binding site are discussed.  相似文献   

19.
An analog of human insulin, which differs from the parent molecule in that the histidine residue at position 10 of the B chain (B10) is replaced by lysine, has been synthesized and isolated in purified form. This analog, [10-lysine-B] insulin ([Lys10-B] insulin), in stimulating lipogenesis and in radioimmunoassays, exhibited potencies of 14.2% and 14.7%, respectively, as compared to the natural hormone. In insulin receptor binding in rat liver membranes, [Lys10-B] insulin was found to possess a potency of ~17% compared to insulin. We have shown previously that substitution of the B10 polar residue histidine with the nonpolar leucine results in an analog exhibiting inin vivo assays ~50% of the activity of the parent molecule. It is speculated that in insulin the relative size of the amino acid residue at B10, rather than its polarity, is the most important factor in maintaining a structure commensurate with high biological activity.  相似文献   

20.
The biologically active partial sequence Arg-Gly-Phe-Phe (position B 22-25 of the insulin B chain) in the form of the synthetic tetrapeptidamide, was compared in several bioassays with the following analogous synthetic peptides: homoarginyl-, ornithyl-, lysyl-, citrullyl-, alanyl- and NG-nitroarginyl-Gly-Phe-Phe-NH2. The syntheses of the lysyl- and alanyl-tetrapeptidamides are described. After intraperitoneal injection of the peptides in doses of 3-100 mumol per 100 g rat, together with [U-14C]glucose, the natural sequence Arg-Gly-Phe-Phe showed the highest insulin like activity (incorporation of labeled carbon into the diaphragm). The activity of the homoarginyl peptide was a little weaker. The ornithyl- and the lysyl-peptide, however, showed a remarkably diminished activity. The activity of the citrullyl-peptide was even lower and the alanyl-peptide was inactive. In vitro assays with rat diaphragm showed the same range of effects for the elevation of glucose uptake and glycogen content of the diaphragm. The activity decreased in the following order: Arg- greater than Har- greater than Orn- greater than Cit-Gly-Phe-Phe-NH2. Alanyl- and Nitroarginyl-Gly-Phe-Phe-NH2 were without effect. In isolated fat cells the glucose oxidation was enhanced significantly only by the arginyl-peptide. The results show that among the structures examined the guanidino group carried by the C5 chain of arginine is the most effective. The results are in accordance with our preceding work [1] using semisynthetic insulins obtained from natural A-chain and synthetic B-chain variants. In these products the replacement of Arg B 22 by ornithine or lysine also led to drastically diminished activity and after replacement of Arg B 22 by alanine the activity also disappeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号