首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The A* protein of phi X174 is an inhibitor of DNA replication   总被引:6,自引:1,他引:5       下载免费PDF全文
Extracts prepared from phi X174 infected E. coli cells inhibited in vitro RF replication The inhibition was dependent upon the presence of A* protein in the reaction and served as an assay to highly purify the A* protein. Purified A* protein bound tightly to duplex DNA as well as single-stranded DNA. The binding of the A* protein to duplex DNA inhibited (I) its single-stranded DNA specific endonucleolytic activity; (II) in vitro synthesis of viral (+) single stranded DNA on an A-RFII DNA complex template; (III) ATP hydrolysis by rep protein and unwinding of the strands of RF DNA. We propose that this inhibitory activity is responsible in vivo for the shut off of E. coli chromosome replication during phi X174 infection, and has a role in the transition from semiconservative RF DNA replication to single-stranded DNA synthesis in the life cycle of phi X174.  相似文献   

2.
The gene A protein of bacteriophage phi X 174 initiates replication of super-twisted RFI DNA by cleaving the viral (+) strand at the origin of replication and binding to the 5' end. Upon addition of E. coli rep protein (single-stranded DNA dependent ATPase), E. coli single-stranded DNA binding protein and ATP, complete unwinding of the two strands occurs. Electron microscopic analyses of intermediates in the reaction reveal that the unwinding occurs by movement of the 5' end into the duplex, displacing the viral strand in the form of a single-stranded loop. Since unwinding will not occur in the absence of either gene A protein or rep protein, it is presumed that the rep protein interacts to form a complex with the bound gene A protein. Single-stranded DNA binding protein facilitates the unwinding by binding to the exposed single-stranded DNA. Further addition of the four deoxyribotriphosphates and DNA polymerase III holoenzyme to the reaction results in synthesis of viral (+) single-stranded circles in amounts exceeding that of the input template. A model describing the role of gene A protein and rep protein in duplex DNA replication is presented and other properties of gene A protein discussed.  相似文献   

3.
An M13 phage deletion mutant, M13 delta E101, developed as a vector for selecting DNA sequences that direct DNA strand initiation on a single-stranded template, has been used for cloning restriction enzyme digests of phi X174 replicative-form DNA. Initiation determinants, detected on the basis of clear-plaque formation by the chimeric phage, were found only in restriction fragments containing the unique effector site in phi X174 DNA for the Escherichia coli protein n' dATPase (ATPase). Furthermore, these sequences were functional only when cloned in the orientation in which the phi X174 viral strand was joined to the M13 viral strand. A 181-nucleotide viral strand fragment containing this initiation determinant confers a phi X174-type complementary-strand replication mechanism on M13 chimeras. The chimeric phage is converted to the parental replicative form in vivo by a mechanism resistant to rifampin, a specific inhibitor of the normal RNA polymerase-dependent mechanism of M13. In vitro, the chimeric single-stranded DNA promotes the assembly of a functional multiprotein priming complex, or primosome, identical to that utilized by intact phi X174 viral strand DNA. Chimeric phage containing the sequence complementary to the 181-nucleotide viral strand sequence shows no initiation capability, either in vivo or in vitro.  相似文献   

4.
The A and A* proteins of phage phi X174 are encoded in the same reading frame in the viral genome; the smaller A protein is the result of a translational start signal with the A gene. To differentiate their respective functions, oligonucleotide-directed site-specific mutagenesis was used to change the ATG start codon of the phi X 174 A* gene, previously cloned into pCQV2 under lambda repressor control, into a TAG stop codon. The altered A gene was then inserted back into phi X replicative form DNA to produce an amber mutant, phi XamA*. Two different Escherichia coli amber suppressor strains infected with this mutant produced viable progeny phage with only a slight reduction in yield. In Su+ cells infected with phi XamA*, phi X gene A protein, altered at one amino acid, was synthesized at normal levels; A* protein was not detectable. These observations indicate that the A* protein increases the replicative efficiency of the phage, perhaps by shutting down host DNA replication, but is not required for replication of phi X174 DNA or the packaging of the viral strand under the conditions tested.  相似文献   

5.
Conversion of phi X174 viral, single-stranded circular DNA to the duplex replicative form (RF), previously observed with partially purified enzymes, has now been demonstrated with the participation of 12 nearly pure Escherichia coli proteins containing approximately 30 polypeptides. To complete the synthesis of a full length complementary strand, E. coli DNA polymerase I was needed to fill the short gap left by DNA polymerase III holoenzyme, and to remove the primer and replace it with DNA. Production of supercoiled RF required the further actions of E. coli DNA ligase and gyrase. Net synthesis of viral circles was obtained by coupling the formation of RF supercoils to the actions of the phi X174-encoded gene A protein and E. coli rep protein. Viral DNA circles produced from enzymatically synthesized supercoiled RF, serving as template-substrate, were indistinguishable from those produced from RF isolated from infected cells; synthetic RF and the viral circles generated from it by replication were as biologically active in transfection of spheroplasts as the forms obtained from infected cells and virions. The conversion of single-stranded circular DNA to RF is suggested here as a model for discontinuous synthesis of the lagging strand of the E. coli chromosome. The primosome, a complex of some of the replication proteins responsible for initiations of DNA chains, will be described elsewhere. Multiplication of RF supercoils, described in the succeeding paper, proceeds by a rolling-circle mechanism in which the synthesis of viral strands may have analogies to the continuous synthesis of the leading strand of the E. coli chromosome.  相似文献   

6.
The phi X174 (phi X) gene A protein-mediated termination and reinitiation of single-stranded circular (SS(c] phi X viral DNA synthesis in vitro were directly and independently analyzed. Following incubation together with purified DNA replication enzymes from Escherichia coli, ATP, [alpha-32P]dNTPs, and either the phi X A protein and phi X replicative form I (RF I) DNA, or the purified RF II X A complex, the phi X A protein was detected covalently linked to newly synthesized 32P-labeled DNA. Formation of the phi X A protein-[32P]DNA covalent complex required all the factors necessary for phi X (+) SS(c) DNA synthesis in vitro. Thus, it was a product of the reinitiation reaction and an intermediate of the replication cycle. Identification of this complex provided direct evidence that reinitiation of phi X (+) strand DNA synthesis involved regeneration of the RF II X A complex. Substitution of 2',3'-dideoxyguanosine triphosphate (ddGTP) for dGTP in reaction mixtures resulted in the formation of covalent phi X A protein 32P-oligonucleotide complexes; these complexes were trapped analogues of the regenerated RF II X A complex. They could not act catalytically due to the presence of ddGMP residues at the 3'-termini of the oligonucleotide moieties. Reaction mixtures containing ddGTP also yielded nonradioactive (+) SS(c) DNA products derived from circularization of the displaced (+) strand of the input parental template DNA. The formation of the phi X A protein-32P-oligonucleotide complexes and nonradioactive (+) SS(c) DNA were used to assay both reinitiation and termination reactions, respectively. Both reactions required DNA synthesis from the 3'-hydroxyl primer at nucleotide residue 4305 which was formed by cleavage of phi X RF I DNA by the phi X A protein. Elongation of this primer by 18, but not 11 nucleotides was sufficient to support each reaction. Reinitiation reactions proceeded rapidly and were essentially complete after 90 s. In contrast, when ddGTP was replaced with dGTP in reaction mixtures, DNA synthesis proceeded with linear kinetics for up to 10 min. These results suggested that in the presence of all four dNTPs, active templates supported more than 40 rounds of DNA synthesis.  相似文献   

7.
Recombinant RF (replicate form) I DNAs containing the bacteriophage phi X174 gene A protein-recognition sequence are cleaved by the phi X A protein yielding a phi X RF II X A protein complex (Zipursky, S.L., Reinberg, D., and Hurwitz, J. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5182-5186). Such complexes support DNA synthesis in both RF I leads to SS(c) and RF I leads to RF I phi X DNA replication reactions in vitro. Two phi X A protein-recognition sequences were inserted into plasmid pBR322. Both sequences were contiguous with the same strand of the vector DNA and separated by 667 and 4275 base pairs. This recombinant plasmid (G27-4) was cleaved by the phi X A protein at either insert and both inserts support the initiation of RF leads to SS(c) DNA synthesis. This was verified by the finding that replication products were circular molecules of 667 and 4275 nucleotides. This finding is in keeping with the multifunctional activities associated with the phi X A protein; these include the site-specific nicking of RF I DNA which initiates DNA synthesis and site-specific termination resulting in the circularization of the displaced DNA strand. The phi X A protein and the Escherichia coli rep and SSb proteins catalyze the unwinding of phi X RF I DNA in vitro (Scott, J.F., Eisenberg, S., Bertsch, L.L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 193-197). Recombinant plasmid G27-4 RF I DNA was also unwound in vitro by this enzyme system; in this case, both circular and linear single-stranded DNA molecules of 667 and 4275 nucleotides, as well as full length circular single-stranded DNA were formed. Full length linear DNA was not detected. The two single-stranded circular DNA products formed as leading strands in RF leads to SS(c) reaction mixtures containing G27-4 RF I DNA differed in their ability to support lagging strand DNA synthesis. It was shown that the large single-stranded circular product included DNA sequences homologous to a replication factor Y effector sequence required for RF leads to RF and SS(c) leads to RF replication (Zipursky, S.L., and Marians, K.J. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6521-6525). The 4275-nucleotide, but not the 667-nucleotide, single-stranded circular DNA product was converted to a duplex structure.  相似文献   

8.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

9.
Purification of a RecA protein analogue from Bacillus subtilis   总被引:29,自引:0,他引:29  
We have identified in Bacillus subtilis an analogue of the Escherichia coli RecA protein. Its activities suggest that it has a corresponding role in general genetic recombination and in regulation of SOS (DNA repair) functions. The B. subtilis protein (B. subtilis Rec) has a Mr of 42,000 and cross-reacts with antisera raised against E. coli RecA protein. Its level is significantly reduced in the recombination-deficient recE4 mutant. B. subtilis Rec is induced 10- to 20-fold in rec+ strains following treatment with mitomycin C, whereas it is not induced in the recombination-deficient mutants recE4, recE45, and recA1. We have purified B. subtilis Rec about 2000-fold to near homogeneity and we describe its activities. It catalyzes DNA-dependent hydrolysis of dATP at a rate comparable to that of E. coli RecA protein. However, B. subtilis Rec has a negligible ATPase activity, although ATP effectively inhibits dATP hydrolysis. In the presence of dATP, B. subtilis Rec catalyzes DNA strand transfer, assayed by the conversion of phi X174 linear duplex DNA and homologous circular single-stranded DNA to replicative form II (circular double-stranded DNA with a discontinuity in one strand). ATP does not support strand transfer by this protein. B. subtilis Rec catalyzes proteolytic cleavage of E. coli LexA repressor in a reaction that requires single-stranded DNA and nucleoside triphosphate. This result suggests that an SOS regulatory system like the E. coli system is present in B. subtilis. The B. subtilis enzyme does not promote any detectable cleavage of the E. coli bacteriophage lambda repressor.  相似文献   

10.
The influence of a C----G transversion at position 1 of the 30-base pair replication origin of bacteriophage phi X174 replicative form I DNA (phi X RFI) was examined in the RF----single-stranded circular DNA replication pathway catalyzed by the combined action of the purified phi X A protein, the Escherichia coli DNA polymerase III holoenzyme, rep helicase, and single-stranded DNA binding protein (Eisenberg, S., Scott, J.F., and Kornberg, A. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1594-1597; Reinberg, D., Zipursky, S.L., and Hurwitz, J. (1981) J. Biol. Chem. 256, 13143-13151). RFI DNA containing this transversion was cleaved to RFII by the phi X A protein as effectively as DNA containing the wild-type origin. The altered duplex DNA, however, supported replication at a slower rate (3- to 4-fold) than the wild-type DNA due to a defect in the termination and reinitiation reactions catalyzed by the phi X A protein. This defect resulted in the accumulation of DNA products containing long single strands covalently joined to the mutant DNA. These single strands were susceptible to nuclease S1 and exonuclease VII attack. The defect in the template DNA containing C----G transversion was not corrected when this mutant origin was placed on the same strand with a wild-type origin. This double-origin DNA was also replicated poorly and led to the accumulation of large products, in contrast to the products formed with RFI DNA containing two wild-type 30-base pair replication origins on the same strand.  相似文献   

11.
Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers. Thus, similarly to its activity on UV-irradiated single-stranded DNA, DNA polymerase III holenzyme can bypass pyrimidine photodimers in the more complex replicative form --->single-strand replication, which involves, in addition to the polymerizing activity, the unwinding of the duplex by the rep helicase and the participation of a more complex multiprotein replisome.  相似文献   

12.
The primosome is a mobile multiprotein priming apparatus that requires seven Escherichia coli proteins for assembly (the products of the dnaB, dnaC and dnaG genes; replication factor Y (protein n'); and proteins i, n, and n"). While the primosome is analagous to the phage T7 gene 4 protein and phage T4 gene 41/61 proteins in its DNA G-catalyzed priming function, its ability to act similarly also as a DNA helicase has remained equivocal. The role of the primosome in unwinding duplex DNA strands was investigated in the coliphage phi X174 SS(c)----replicative form DNA replication reaction in vitro, which requires the E. coli single-stranded DNA binding protein, the primosomal proteins, and the DNA polymerase III holoenzyme. Multigenome-length, linear, double-stranded DNA molecules were generated in this reaction, presumably via a rolling circle-type mechanism. Synthesis of these products required the presence of a helicase-catalyzed strand-displacement activity to permit multiple cycles of continuous complementary (-) strand synthesis. The participation of the primosome in this helicase activity was supported by demonstrating that other SS(c) DNA templates (G4 and alpha-3), which lack primosome assembly sites, failed to support significant linear multimer production and that replication of phi X174 with the general priming system (the DNA B and DNA G proteins and DNA polymerase III holoenzyme) resulted in a 13-fold lower rate of linear multimer synthesis.  相似文献   

13.
The influence of the bacteriophage phi X174 (phi X) C protein on the replication of bacteriophage phi X174 DNA has been examined. This small viral protein, which is required for the packaging of phi X DNA into proheads, inhibits leading strand DNA synthesis. The inhibitory effect of the phi X C protein requires a DNA template bearing an intact 30-base pair (bp) phi X origin of DNA replication that is the target site recognized by the phi X A protein. Removal of nucleotides from the 3' end of this 30-bp conserved origin sequence prevents the inhibitory effects of the phi X C protein. Leading strand replication of supercoiled DNA substrates containing the wild-type phi X replication origin results in the production of single-stranded circular DNA as well as the formation of small amounts of multimeric and sigma structures. These aberrant products are formed when the termination and reinitiation steps of the replication pathway reactions are skipped as the replication fork moves through the origin sequence. Replication carried out in the presence of the phi X C protein leads to a marked decrease in these aberrant structures. While the exact mechanism of action of the phi X C protein is not clear, the results presented here suggest that the phi X C protein slows the movement of the replication fork through the 30-bp origin sequence, thereby increasing the fidelity of the termination and reinitiation reactions. In keeping with the requirement for the phi X C protein for efficient packaging of progeny phi X DNA into proheads, the phi X C protein-mediated inhibition of leading strand synthesis is reversed by the addition of proteins essential for phi X bacteriophage formation. Incubation of plasmid DNA substrates bearing mutant 30 base pair phi X origin sequences in the complete packaging system results in the in vitro packaging and production of infectious particles in a manner consistent with the replication activity of the origin under study.  相似文献   

14.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

15.
The binding of the bacteriophage phi X 174-coded A and A* proteins to single-stranded (ssDNA) and double-stranded (dsDNA ) phi X DNA was studied by electron microscopy. The interaction of the A* protein with ssDNA and dsDNA was also studied by sedimentation velocity centrifugation. It was shown that the binding of the A and A* proteins to ssDNA occurs in a non-cooperative manner and requires no or very little sequence specificity under the conditions used here. Both protein-ssDNA complexes have the same compact structure caused by intrastrand cross-linking through the interaction of protein molecules with separate parts of the ssDNA molecule. The A protein does not bind to phi X dsDNA in the absence of divalent cations. The A* protein does bind to dsDNA, although it has a strong preference for binding to ssDNA. The structure of the A* protein-dsDNA complexes is different from that of the A* protein-ssDNA complexes, as the former have a rosette-like structure caused by protein-protein interactions. High ionic strengths favour the formation of large condensed aggregates.  相似文献   

16.
Supercoiled plasmid bearing two wild-type phi X origin sequences on the same strand supported the phi X A protein-dependent in vitro formation of two smaller single-stranded circles, the lengths of which were equivalent to the distance between the two origins. Additional double origin plasmids were utilized to determine whether origins defective in the initial nicking event (initiation) could support circularization (termination). In all cases tested, the presence of a mutant origin on the same strand with a wild-type origin affected the level of replication in a manner consistent with the previously determined activity of the mutant origin. When a functional mutant origin was present on the same strand as a wild-type origin, the efficiency of replication and the DNA products formed were almost identical to those of the plasmid containing two wild-type origins. Plasmid DNA bearing both a wild-type origin and a mutant origin that did not support phi X A protein binding or nicking activity, on the other hand, supported efficient DNA synthesis of only full-length circular products, indicating that the origin defective for initiation was incapable of supporting termination. In contrast, the presence of a wild-type origin and an origin that did bind the phi X A protein but was not cleaved resulted in a marked decrease in DNA synthesis along with the production of only full-length products. This suggests that the phi X A protein stalls when it encounters a sequence to which it can bind but cannot cleave. Replication of double origin plasmids containing one functional phi X origin on each strand of the supercoiled DNA was also examined. With such templates, synthesis from the wild-type origin predominated, indicating preferential cleavage of the intact origin sequence. Replication of such substrates also produced a number of aberrant structures, the properties of which suggested that interstrand exchange of the phi X A protein had occurred.  相似文献   

17.
The nuclease specificity of the bacteriophage phi X174 A* protein.   总被引:6,自引:3,他引:3       下载免费PDF全文
The A* protein of bacteriophage phi X174 is a single-stranded DNA specific nuclease. It can cleave phi X viral ss DNA in many different places. The position of these sites have been determined within the known phi X174 nucleotide sequence (1). From the sequences at these sites it is clear that the A* protein recognizes and cleaves at sites that show only partial homology with the origin of RF DNA replication in the phi X DNA. Different parts of the origin sequence can be deduced that function as a signal for recognition and cleavage by the A* protein. We conclude that different parts within the DNA recognition domain of the A* protein are functional in the recognition of the origin sequence in single-stranded DNA. The existence of different DNA recognition domains in the A* protein, and therefore also in the A protein, leads to a model that can explain how the A protein performs its multiple function in the phi X174 DNA replication process (2).  相似文献   

18.
Purified phi X gene A* protein cleaves phi X single stranded DNA. The cleavage appears to be stoichiometric, whereby a gene A* protein molecule cleaves a phosphodiester bond and binds to the DNA fragment. The size of the cleavage product was inversely proportional to the ratio of A* protein to DNA in the reaction mixture. The cleavage of the DNA resulted in the formation of an A* protein - ssDNA complex identified on SDS-polyacrylamide gels and by banding in CsCl. An A* protein-ssDNA complex was isolated by gel filtration and shown to be active in a ligating reaction in which the two ends of the DNA fragment were joined to form a covalently closed circle. The joining reaction required Mg++ ions and was accompanied by the release of the protein from the DNA.  相似文献   

19.
Bacteriophage phi X174 viral strand DNA molecules shorter than genome length found late in the infectious cycle in Escherichia coli were 5' end labeled with 32P. Hybridization of the 32P-labeled molecules to restriction enzyme fragments of phi X replicative form DNA revealed an excess of phi X molecules whose 5' ends mapped in HaeIII fragments Z3 and Z4 in comparison with fragments Z1 and Z2. This suggests that initiation of phi X174 viral strand DNA synthesis may occur at internal sites on the complementary strand. There are several appropriately located sequences that might serve as n' (factor Y) recognition sequences and thereby facilitate discontinuous synthesis of the viral strand.  相似文献   

20.
The protein product of the rep gene of Escherichia coli is required for the replication of certain bacteriophage genomes (phi X174, fd, P2) and for the normal replication of E. coli DNA. We have used a specialized transducing phage, lambda p rep+, which complements the defect of rep mutants, to identify the rep protein. The rep protein has been purified from cells infected with lambda p rep+ phage; it has a molecular weight of about 70 000 and appears similar to the protein found in normal cells. Stimulation of phi X174 replicative form DNA synthesis in vitro was observed when highly purified rep protein was supplied to a cell extract derived from phi X-infected E. coli rep cells and supplemented with replicative form DNA. The purified protein has a single-stranded DNA-dependent ATPase activity and is capable of sensitizing duplex DNA to nucleases specific for single-stranded DNA. For this reason we propose the enzyme be called DNA helicase III. We infer that the rep protein uses the energy of hydrolysis of ATP to separate the strands of duplex DNA; the E. coli DNA binding protein need not be present. The rep3 mutant appeared to make a limited amount of active rep protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号