首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low‐light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes.  相似文献   

2.
The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.  相似文献   

3.
In mammals, species with more frontally oriented orbits have broader binocular visual fields and relatively larger visual regions in the brain. Here, we test whether a similar pattern of correlated evolution is present in birds. Using both conventional statistics and modern comparative methods, we tested whether the relative size of the Wulst and optic tectum (TeO) were significantly correlated with orbit orientation, binocular visual field width and eye size in birds using a large, multi-species data set. In addition, we tested whether relative Wulst and TeO volumes were correlated with axial length of the eye. The relative size of the Wulst was significantly correlated with orbit orientation and the width of the binocular field such that species with more frontal orbits and broader binocular fields have relatively large Wulst volumes. Relative TeO volume, however, was not significant correlated with either variable. In addition, both relative Wulst and TeO volume were weakly correlated with relative axial length of the eye, but these were not corroborated by independent contrasts. Overall, our results indicate that relative Wulst volume reflects orbit orientation and possibly binocular visual field, but not eye size.  相似文献   

4.
In birds, large brains are associated with a series of population‐level phenomena, including invasion success, species richness, and resilience to population decline. Thus, they appear to open up adaptive opportunities through flexibility in foraging and anti‐predator behaviour. The evolutionary pathway leading to large brain size has received less attention than behavioural and ecological correlates. Using a comparative approach, we show that, independent of previously recognized associations with developmental constraints, relative brain size in birds is strongly related to biparental care, pair‐bonding, and stable social relationships. We also demonstrate correlated evolution between large relative brain size and altricial development, and that the evolution of both traits is contingent on biparental care. Thus, biparental care facilitates altricial development, which permits the evolution of large relative brain size. Finally, we show that large relative brain size is associated with pair‐bond strength, itself a likely consequence of cooperation and negotiation between partners under high levels of parental investment. These analyses provide an evolutionary model for the evolution of and prevalence of biparental care, altricial development, and pair‐bonding in birds. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 111–123.  相似文献   

5.
Predatory diving birds, such as cormorants (Phalacrocoracidae), have been generally regarded as visually guided pursuit foragers. However, due to their poor visual resolution underwater, it has recently been hypothesized that Great Cormorants do not in fact employ a pursuit-dive foraging technique. They appear capable of detecting typical prey only at short distances, and primarily use a foraging technique in which prey may be detected only at close quarters or flushed from a substratum or hiding place. In birds, visual field parameters, such as the position and extent of the region of binocular vision, and how these are altered by eye movements, appear to be determined primarily by feeding ecology. Therefore, to understand further the feeding technique of Great Cormorants we have determined retinal visual fields and eye movement amplitudes using an ophthalmoscopic reflex technique. We show that visual fields and eye movements in cormorants exhibit close similarity with those of other birds, such as herons (Ardeidae) and hornbills (Bucerotidae), which forage terrestrially typically using a close-quarter prey detection or flushing technique and/or which need to examine items held in the bill before ingestion. We argue that this visual field topography and associated eye movements is a general characteristic of birds whose foraging requires the detection of nearby mobile prey items from within a wide arc around the head, accurate capture of that prey using the bill, and visual examination of the caught prey held in the bill. This supports the idea that cormorants, although visually guided predators, are not primarily pursuit predators, and that their visual fields exhibit convergence towards a set of characteristics that meet the perceptual challenges of close-quarter prey detection or flush foraging in both aquatic and terrestrial environments.  相似文献   

6.
Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal ‘bottleneck’ in the early evolution of crown mammals.  相似文献   

7.
Prey avoid being eaten by assessing the risk posed by approaching predators and responding accordingly. Such an assessment may result in prey–predator communication and signalling, which entail further monitoring of the predator by prey. An early antipredator response may provide potential prey with a selective advantage, although this benefit comes at the cost of disturbance in terms of lost foraging opportunities and increased energy expenditure. Therefore, it may pay prey to assess approaching predators and determine the likelihood of attack before fleeing. Given that many approaching potential predators are detected visually, we hypothesized that species with relatively large eyes would be able to detect an approaching predator from afar. Furthermore, we hypothesized that monitoring of predators by potential prey relies on evaluation through information processing by the brain. Therefore, species with relatively larger brains for their body size should be better able to monitor the intentions of a predator, delay flight for longer and hence have shorter flight initiation distances than species with smaller brains. Indeed, flight initiation distances increased with relative eye size and decreased with relative brain size in a comparative study of 107 species of birds. In addition, flight initiation distance increased independently with size of the cerebellum, which plays a key role in motor control. These results are consistent with cognitive monitoring as an antipredator behaviour that does not result in the fastest possible, but rather the least expensive escape flights. Therefore, antipredator behaviour may have coevolved with the size of sense organs, brains and compartments of the brain involved in responses to risk of predation.  相似文献   

8.
Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish, Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild‐caught and common garden‐reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities.  相似文献   

9.
Compared to other birds, most raptors take large prey for their size, and feeding bouts are extended. However, ingestion rate has largely been overlooked as a constraint in raptors' foraging and breeding ecology. We measured ingestion rate by offering avian and mammalian prey to eighteen wild raptors temporarily kept in captivity, representing seven species and three orders. Ingestion rate was higher for small than for large prey, higher for mammalian than for avian prey, higher for large than for small raptors, and higher for wide-gaped than for narrow-gaped raptors. Mammalian prey were ingested faster by raptors belonging to species with mainly mammals in their diet than by raptors with mainly birds in their diet, but the drop in ingestion rate with increasing prey size was more rapid for the former than for the latter. We argue that the separate sex roles found in raptors, i.e. the male hunting and the female feeding the young, is a solution of the conflict between the prolonged feeding bouts at the nest, and the benefit of rapid resumption of hunting in general, and rapid return to the previous capture site in particular (the prey size hypothesis). Thus, the sex roles differ more when prey takes longer to feed, i.e. from insects to mammals to birds. We then argue that the reversed sexual size dimorphism in raptors, i.e. smaller males than females, results from a conflict between the benefit of being small during breeding to capture the smallest items with the highest ingestion rate among these agile prey types (mammals and bird), and the benefit of being large outside the breeding season to ensure survival by being able to include large items in the diet when small items are scarce (the ingestion rate hypothesis). This hypothesis explains the observed variation in reversed sexual size dimorphism among raptors in relation to size and type of prey, i.e. increasing RSD from insects to mammals to birds as prey.  相似文献   

10.
Conflicting theories have been proposed to explain variation in relative brain size across the animal kingdom. Ecological theories argue that the cognitive demands of seasonal or unpredictable environments have selected for increases in relative brain size, whereas the ‘social brain hypothesis’ argues that social complexity is the primary driver of brain size evolution. Here, we use a comparative approach to test the relative importance of ecology (diet, foraging niche and migration), sociality (social bond, cooperative breeding and territoriality) and developmental mode in shaping brain size across 1886 bird species. Across all birds, we find a highly significant effect of developmental mode and foraging niche on brain size, suggesting that developmental constraints and selection for complex motor skills whilst foraging generally imposes important selection on brain size in birds. We also find effects of social bonding and territoriality on brain size, but the direction of these effects do not support the social brain hypothesis. At the same time, we find extensive heterogeneity among major avian clades in the relative importance of different variables, implying that the significance of particular ecological and social factors for driving brain size evolution is often clade- and context-specific. Overall, our results reveal the important and complex ways in which ecological and social selection pressures and developmental constraints shape brain size evolution across birds.  相似文献   

11.
Strepsirrhine and haplorhine primates exhibit highly derived features of the visual system that distinguish them from most other mammals. Comparative data link the evolution of these visual specializations to the sequential acquisition of nocturnal visual predation in the primate stem lineage and diurnal visual predation in the anthropoid stem lineage. However, it is unclear to what extent these shifts in primate visual ecology were accompanied by changes in eye size and shape. Here we investigate the evolution of primate eye morphology using a comparative study of a large sample of mammalian eyes. Our analysis shows that primates differ from other mammals in having large eyes relative to body size and that anthropoids exhibit unusually small corneas relative to eye size and body size. The large eyes of basal primates probably evolved to improve visual acuity while maintaining high sensitivity in a nocturnal context. The reduced corneal sizes of anthropoids reflect reductions in the size of the dioptric apparatus as a means of increasing posterior nodal distance to improve visual acuity. These data support the conclusion that the origin of anthropoids was associated with a change in eye shape to improve visual acuity in the context of a diurnal predatory habitus.  相似文献   

12.
Food‐hoarding birds frequently use spatial memory to relocate their caches, thus they may evolve a larger hippocampus in their brain than non‐hoarder species. However, previous studies testing for such interspecific relationships provided conflicting results. In addition, food hoarding may be a cognitively complex task involving elaboration of a variety of brain regions, even outside of the hippocampus. Hence, specialization to food hoarding may also result in the enlargement of the overall brain. In a phylogenetic analysis of distantly related birds, we studied the interspecific association between food hoarding and the size of different brain regions, each reflecting different resolutions. After adjusting for allometric effects, the relative volume of the hippocampus and the relative size of the entire brain were each positively related to the degree of food‐hoarding specialization, even after controlling for migration and brood parasitism. We also found some significant evidence for the relative volume of the telencephalon being associated with food hoarding, but this relationship was dependent on the approach we used. Hence, neural adaptation to food hoarding may favour the evolution of different brain structures.  相似文献   

13.
Mammals have evolved several morphological and behavioral adaptations to reduce the risk of predation, but we know little about the ecological factors that favor their evolution. For example, some mammalian carnivores have the ability to spray noxious anal secretions in defense, whereas other species lack such weaponry but may instead rely on collective vigilance characteristic of cohesive social groups. Using extensive natural history data on 181 species in the order Carnivora, we created a new estimate of potential predation risk from mammals and birds of prey and used comparative phylogenetic methods to assess how different sources of predation risk and other ecological variables influence the evolution of either noxious weaponry or sociality in this taxon. We demonstrate that the evolution of enhanced spraying ability is favored by increased predation risk from other mammals and by nocturnality, but the evolution of sociality is favored by increased predation risk from birds of prey and by diurnality, which may allow for enhanced early visual detection. These results suggest that noxious defenses and sociality are alternative antipredator strategies targeting different predator guilds under different lighting conditions.  相似文献   

14.
Especially in birds, it is widely found that the size of individual prey items follows the size of the instruments of prey capture, handling and processing, i.e. bill size. In fact, this is the natural history basis of major discoveries on adaptive evolution in the face of changing food resources. In some birds, e.g. the molluscivore shorebirds ingesting hard‐shelled prey, most of the prey processing takes place within the digestive tract. This study of a salvaged sample of actively feeding great knots Calidris tenuirostris accidentally drowned in fishing nets in northern China, is the first documentation of diet selection at the level of the individual in previously well‐studied molluscivore shorebirds. Diet composition was not associated with the length of the bill, but with the mass of the muscular gizzard. Gizzard mass, which unlike bill length is a phenotypically flexible trait, enables great knots to adjust to changing food resources as an individual, i.e. instantly responding to the food on offer. For migratory species like great knots which rely on seasonal sequences of interdistant feeding areas offering prey with a variety of characteristics, the capacity to individually adjust appears a key adaptation.  相似文献   

15.
To explain the adaptive significance of sex role partitioning and reversed sexual size dimorphism among raptors, owls and skuas, where females are usually larger than males, we combine several previous hypotheses with some new ideas. Owing to their structural and behavioural adaptations for prey capture, predatory birds have better prospects than other birds of defending their offspring against nest predators. This makes sex role partitioning advantageous; one parent guards the offspring while the other forages for the family. Further, among predators hunting alert prey such as vertebrates, two mates because of interference may not procur much more food than would one mate hunting alone. By contrast, two mates feeding on less alert prey may together obtain almost twice as much food as one mate hunting alone. For these reasons, partitioning of breeding labours might be adaptive only in predatory birds. An initial imbalance favours female nest guarding and male foraging: the developing eggs might be damaged if the female attacks prey; their mass might reduce her flight performance; she must visit the nest to lay; and the male feeds her before she lays (‘courtship feeding’). Increased female body size should enhance egg production, incubation, ability to tear apart prey for the young, and, in particular, offspring protection in predatory birds. Efficient foraging during the breeding period then becomes most important for the male. This imposes great demands on aerial agility in males, particularly among predators of agile prey. Flight performance decreases with increasing size in five of six aspects explored. The male must therefore not be too large in relation to the most important prey. For these reasons, he should be smaller than the female. Among predatory birds, size dimorphism increases with the proportion of birds in the diet, which may be explained as follows. Adult birds have mainly one type of predators: other predatory birds. Because almost only these specialists exploit adult birds, they carry out most of the cropping of this prey. A predator of easier prey competes with many other kinds of predators, which considerably reduce prey abundance in its territory. This is not so for predators of adult birds. Further, because birds are extremely agile, the specialized predator can hunt efficiently only within a limited size range of birds, whose flight skill it can match. Increased size dimorphism among these predators therefore should be particularly important for enlarging the combined food base of the pair. A bird specialist may consume much of the available prey in the suitable size range during the breeding period. When the predator's young are large enough to defend themselves, the female aids better by hunting than by guarding the chicks. It is advantageous among bird specialists if she hunts prey of other sizes than does the male, who has by then reduced prey abundance in his prey size class. But among predatory birds hunting easier prey the female gains little by hunting outside the male's prey spectrum, because other kinds of predators will have reduced the prey abundance outside as well as inside the male's preferred size range. Intra-pair food separation through large sexual size dimorphism therefore should be particularly advantageous among predators of birds. This may be the main reason why the degree of size dimorphism increases with the dietary proportion of birds.  相似文献   

16.
Among primates, nocturnal species exhibit relatively larger orbital apertures than diurnal species. Most researchers have considered this disparity in orbital aperture size to reflect differences in eye size, with nocturnal primates having relatively large eyes in order to maximize visual sensitivity. Presumed changes in eye size due to shifts in activity pattern are an integral part of theoretical explanations for many derived features of anthropoids, including highly convergent orbits and a postorbital septum. Here I show that despite clear differences in relative orbital aperture size, many diurnal and nocturnal primates do not differ in relative eye size. Among nocturnal primates, relative eye size is influenced by diet. Nocturnal visual predators (e.g., Tarsius, Loris, and Galago moholi) tend to have larger relative eye sizes than diurnal primates. By contrast, nocturnal frugivores (e.g., Perodicticus, Nycticebus, and Cheirogaleus) have relative eye sizes that are comparable to those of diurnal primates. Although some variation in orbital aperture size can be attributed to variation in eye size, both cornea size and orbit orientation also exert a strong influence on orbital aperture size. These findings argue for caution in the use of relative orbital aperture size as an indicator of activity pattern in fossil primates. These findings further suggest that existing scenarios for the evolution of unique orbital morphologies in anthropoids must be modified to reflect the importance of ecological variables other than activity pattern.  相似文献   

17.
BackgroundGaining extrapair copulations (EPCs) is a complicated behavior process. The interaction between males and females to procure EPCs may be involved in brain function evolution and lead to a larger brain. Thus, we hypothesized that extrapair paternity (EPP) rate can be predicted by relative brain size in birds. Past work has implied that the EPP rate is associated with brain size, but empirical evidence is rare.MethodsWe collated data from published references on EPP levels and brain size of 215 bird species to examine whether the evolution of EPP rate can be predicted by brain size using phylogenetically generalized least square (PGLS) models and phylogenetic path analyses.ResultsWe found that EPP rates (both the percentage EP offspring and percentage of broods with EP offspring) are negatively associated with relative brain size. We applied phylogenetic path analysis to test the causal relationship between relative brain size and EPP rate. Best‐supported models (ΔCICc < 2) suggested that large brain lead to reduced EPP rate, which failed to support the hypothesis that high rates of EPP cause the evolution of larger brains.ConclusionThis study indicates that pursuing EPCs may be a natural instinct in birds and the interaction between males and females for EPCs may lead to large brains, which in turn may restrict their EPC level for both sexes across bird species.  相似文献   

18.
In birds, there is a retinofugal projection from the brain to the retina originating from the isthmo optic nucleus (ION) in the midbrain. Despite a large number of anatomical, physiological and histochemical studies, the function of this retinofugal system remains unclear. Several functions have been proposed including: gaze stabilization, pecking behavior, dark adaptation, shifting attention, and detection of aerial predators. This nucleus varies in size and organization among some species, but the relative size and morphology of the ION has not been systematically studied. Here, we present a comparison of the relative size and morphology of the ION in 81 species of birds, representing 17 different orders. Our results show that several orders of birds, besides those previously reported, have a large, well-organized ION, including: hummingbirds, woodpeckers, coots and allies, and kingfishers. At the other end of the spectrum, parrots, herons, waterfowl, owls and diurnal raptors have relatively small ION volumes. ION also appears to be absent or unrecognizable is several taxa, including one of the basal avian groups, the tinamous, which suggests that the ION may have evolved only in the more modern group of birds, Neognathae. Finally, we demonstrate that evolutionary changes in the relative size and the cytoarchitectonic organization of ION have occurred largely independent of phylogeny. The large relative size of the ION in orders with very different lifestyles and feeding behaviors suggest there is no clear association with pecking behavior or predator detection. Instead, our results suggest that the ION is more complex and enlarged in birds that have eyes that are emmetropic in some parts of the visual field and myopic in others. We therefore posit that the ION is involved in switching attention between two parts of the retina i.e. from an emmetropic to a myopic part of the retina.  相似文献   

19.
Proposed mechanisms for the decline of terrestrial and understory insectivorous birds in the tropics include a related subset that together has been termed the ‘microclimate hypothesis’. One prediction from this hypothesis is that sensitivity to bright light environments discourages birds of the dimly lit rainforest interior from using edges, gaps, or disturbed forest. Using a hierarchical Bayesian framework and capture data across time and space, we tested this by first determining vulnerability based on differences in within‐species capture rates between disturbed and undisturbed forest for 64 bird species at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. We found that 35 species (55%) were vulnerable to anthropogenic habitat degradation, whereas only four (6%) were more commonly captured in degraded forest. To infer visual sensitivity, we then examined two different characters: eye size (maximum pupil diameter) relative to body mass and the initiation time of dawn song, which presumably reflects a species’ visual capacity under low light intensities. We predicted that species with large relative eye sizes and birds with earlier dawn songs would exhibit increased vulnerability in degraded habitats with bright light. Contrary to our predictions, however, vulnerability was positively correlated with the mean start time of dawn song. This indicates that species that wait to initiate dawn song are also more vulnerable to habitat degradation. After correcting for body size, there was no effect of eye size on vulnerability. Together, our results do not provide quantitative support for the light sensitivity mechanism of the microclimate hypothesis. More sensitive experimental tests, such as behavioral assays with controlled light environments, especially in a comparative framework, are needed to rigorously evaluate the role of light sensitivity as an aspect of the microclimate hypothesis among Neotropical birds.  相似文献   

20.
Sperm competition and sexually size dimorphic brains in birds   总被引:4,自引:0,他引:4  
Natural selection may favour sexually similar brain size owing to similar selection pressures in males and females, while sexual selection may lead to sexually dimorphic brains. For example, sperm competition involves clear-cut sex differences in behaviour, as males display, mate guard and copulate with females, while females choose among males, and solicit or reject copulations. These behaviours may require fundamentally different neural government in the two sexes leading to sex-dependent brain evolution. Using two phylogenetic approaches in a comparative study, we tested for roles of both natural and sexual-selection pressures on brain size evolution of birds. In accordance with the natural-selection theory, relative brain size of males coevolved with that of females, which may be the result of adaptation to similar environmental constraints such as feeding innovation. However, the mode of brain size evolution differed between the sexes, and factors associated with sperm competition as reflected by extra-pair paternity may give rise to sexually size dimorphic brains. Specifically, species in which females have larger brains than males were found to have a higher degree of extra-pair paternity independently of potentially confounding factors, whereas species in which males have relatively larger brains than females appeared to have lower rates of extra-pair paternity. Hence, the evolution of sperm competition may select for complex behaviours together with the associated neural substrates in the sex that has a higher potential to control extra-pair copulations at the observed levels. Brain function may thus be affected differently in males and females by sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号