首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Phytochemistry》1987,26(9):2467-2470
An indirect sandwich enzyme linked immunosorbent assay (ELISA), which used both rabbit polyclonal and rat monoclonal antibodies to nitrate reductase (NR) (E.C.1.6.6.1), was adapted to measure NR protein in crude extracts of spinach (Spinacea oleracea) plants. Conditions were optimised for maximum dose response with respect to coating times and dilutions of antibodies and antigen. These were polyclonal, 1 hr and 1/3000; antigen, 1 hr; monoclonal, 1 hr and 50μg protein/ml for MAC 74; and antispecies, 40 min at 27° and 1/2000 sheep anti-rat. The ELISA signal was a linear function of the amount of NR up to ca 1.5 ng and of the log of the amount of NR over the range 20–1200 ng. All our monoclonals (AFRC MAC 74–79) gave positive dose responses and the method is illustrated with MAC 74. Changes in antigenic NR in leaves of spinach plants on nutrient-nitrate removal followed by resupply and the distribution of NR in roots, petioles and leaves of spinach plants, were measured by ELISA and shown to be related to changes in NADH-NR activity.  相似文献   

2.
Six fdn mutants of Salmonella typhimurium defective in the formation of nitrate reductase-linked formate dehydrogenase (FDHN) but capable of producing both the hydrogenase-linked formate dehydrogenase (FDHH) and nitrate reductase were characterized. Results of phage P22 transduction experiments indicated that there may be three fdn genes located on the metE-metB chromosomal segment and distinct from all previously identified fdh and chl loci. All six FDHH+ FDHN- mutants were found to make FDHN enzyme protein which was indistinguishable from that of the wild type in electrophoretic studies. However, the results of the spectral studies indicated that all six mutants were defective in the anaerobic cytochrome b559 associated with FDHN. All contained the cytochrome b559 associated with nitrate reductase in amounts equal to or greater than the wild type. The results of the transduction experiments also indicated that the metE- metB segment of the Salmonella chromosome resembles that of Escherichia coli more than was originally thought.  相似文献   

3.
Activation of nitrate reductase by extracts from corn scutella   总被引:1,自引:0,他引:1       下载免费PDF全文
Yamaya T  Oaks A 《Plant physiology》1980,66(2):212-214
NADH-nitrate reductase (NR) from the primary leaves and root tips of corn seedlings (var. W64A × W182E) were activated by extracts from corn scutella. The activator extracted in potassium phosphate buffer (pH 7.5) or 80% (v/v) ethanol and fractionated by Dowex 1 (acetate) and Dowex 50 (H+) resins was recovered in the cationic fraction. The activator was not detected in extracts from shoots, roots, or endosperm of the seedlings. It activated the nitrate-induced cytochrome c reductase of NR complex but had slight inhibitory effects on the activities of FMNH2-NR and reduced methylviologen-NR. In addition the activator inhibited the activities of purified NR-inactivating proteins from corn roots (var. Wf9 × 38-11) and rice cell cultures.  相似文献   

4.
5.
The stability of nitrate reductase (NR) in extracts from 4-, 5- and 6-day-old primary leaves of barley was examined. The half-time of loss of NR activity was found to be 358, 107 and 70 min, respectively. Bovine serum albumin (BSA) and phenylmethylsulphonylfluoride (PMSF) stabilized NR in extracts from 5- and 6-day-old primary leaves, but BSA was much more effective. The increased instability of NR with age correlated with increased conversion of the MW 203 000 NR complex to smaller NADH cytochrome c reductase (CR) species of MW 163 000, 61 000 and 40 000. The MW 163 000 CR species also possessed NR activity. BSA prevented and PMSF retarded the conversion of NR to the smaller CR species. The increased instability of NR in extracts from older tissue may be due to increased conversion of NR to smaller CR species. The ability of PMSF and BSA to stabilize NR and inhibit conversion of NR to the smaller CR species indicates that these phenomena are probably due to proteolytic degradation of NR. This suggestion is supported by the observation that trypsin cleaved NR to 3–4 S CR species and that cleavage was retarded by the presence of BSA. Endogenous proteinase attack at specific sites between domains of the barley NR complex may generate the CR species seen in barley extracts. The MW 40 000 CR species probably carries at least the FAD domain.  相似文献   

6.
B. A. Notton  R. J. Fido  G. Galfre 《Planta》1985,165(1):114-119
A set of monoclonal antibodies has been raised against NADH-nitrate reductase (NR; EC 1.6.6.1) from spinach (Spinacea oleracea L.) leaves. Antibodies were screened by enzyme-linked immunosorbent assay and by their ability to inhibit various activities of the enzyme. The six monoclonals selected (AFRC MAC 74 to 79) are all gamma globulins; four (MAC 74 to 77) inhibit all terminal donating activities (NADH-NR; flavin mononucleotide, reduced form (FMNH2)-NR; and methyl viologen, reduced form (MV)-NR) and two (MAC 78 and 79) inhibit the acceptor activities (NADH-NR, and NADH-cytochrome c reductase). MAC 74 to 77 inhibit the NADH-NR activity of crude extracts of a variety of species (mono- and dicotyledoneae) while MAC 78 and 79 are effective against spinach and marrow, but not oil-seed rape, cucumber, oats, wheat and barley.Abbreviations Cyt c Rase cytochrome c reductase - ELISA enzyme-linked immunosorbent assay - FAD(H2) flavin adenine dinucleotide (reduced form) - FMN(H2) flavin mononucleotide (reduced form) - McAb monoclonal antibody - MV methyl viologen reduced form - NR nitrate reductase  相似文献   

7.
Evidence is presented which suggests that the NAD(P)H-cytochrome c reductase component of nitrate reductase is the main site of action of the inactivating enzyme. When tested on the nitrate reductase (NADH) from the maize root and scutella, the NADH-cytochrome c reductase was inactivated at a greater rate than was the FADH2-nitrate reductase component. With the Neurospora nitrate reductase (NADPH) only the NADPH-cytochrome c reductase was inactivated. p-Chloromercuribenzoate at 50 muM, which gave almost complete inhibition of the NADH-cytochrome c reductase fraction of the maize nitrate reductase, had no marked effect on the action of the inactivating enzyme. A reversible inactivation of the maize nitrate reductase has been shown to occur during incubation with NAD(P)H. In contrast to the action of the inactivating enzyme, it is the FADH2-nitrate reductase alone which is inactivated. No inactivation of the Neurospora nitrate reductase was produced by NAD(P)H alone and also in the presence of FAD. The lack of effect of the inactivating enzyme and NAD(P)H on the FADH2-nitrate reductase of Neurospora suggests some differences in its structure or conformation from that of the maize enzyme. A low level of cyanide (0.4 mu M) markedly enhanced the action of NAD(P)H on the maize enzyme; Cyanide at a higher level (6 mu M) did give inactivation of the Neurospora nitrate reductase in the presence of NADPH and FAD. The maize nitrate reductase, when partially inactivated by NADH and cyanide, was not altered as a substrate for the inactivating enzyme. The maize root inactivating enzyme was also shown to inactivate the nitrate reductase (NADH) in the pea leaf. It had no effect on the nitrate reductase from either Pseudomonas denitrificans or Nitrobacter agilis.  相似文献   

8.
The addition of nickel (4 × 10−3m) to the extracting buffer enhances the nitrate reductase activity in preparations of young grain sorghum (Sorghum bicolor L. [Moench] leaf tissue by as much as 6-fold. Activities comparable to other plant species are obtained over an extraction pH range of 7 to 8 with tris buffer and reduced nicotinamide adenine dinucleotide as a cofactor for the reaction when the ratio of plant material to extraction medium is 1:20. The method also enhances nitrate reductase activity in sudangrass (Sorghum sudanense P. [Stapf]).  相似文献   

9.
Reduced nicotinamide adenine dinucleotide phosphate-dependent nitrate reductase activity in crude extracts of Trichoderma virde was significantly inhibited by physiological concentrations of ammonium chloride, sodium chloride, and potassium chloride, but not by ammonium or sodium sulfate. The chloride inhibition of nitrate reductase activity increased in a linear manner with chloride concentration.  相似文献   

10.
Evidence for a complex control system for nitrate reductase in wheat leaves   总被引:2,自引:0,他引:2  
Upcroft JA  Done J 《FEBS letters》1972,21(2):142-144
  相似文献   

11.
Im YJ  Ji M  Lee AM  Boss WF  Grunden AM 《FEBS letters》2005,579(25):5521-5526
Pyrococcus furiosus superoxide reductase (SOR) is a thermostable archaeal enzyme that reduces superoxide without producing oxygen. When produced as a fusion protein with the green fluorescent protein in plant cells, P. furiosus SOR is located in the cytosol and nucleus. The recombinant SOR enzyme retains its function and heat stability when assayed in vitro. Importantly, expressing SOR in plant cells enhances their survival at high temperature indicating that it functions in vivo. The archaeal SOR provides a novel mechanism to reduce superoxide and demonstrates the potential for using archaeal genes to alter eukaryotic metabolism.  相似文献   

12.
1. In respiratory nitrate reductase I of Klebsiella aerogenes, 0.24 atom of molybdenum, eight iron-sulfur groups and four tightly bound, non-heme iron atoms per molecule of enzyme (Mr 260 000) are found. 2. EPR spectra at 83 degrees K of oxidized and reduced nitrate reductase I show complex lines at g = 2.02 and g = 1.98, which are more intense in the reduced than in the oxidized enzyme. The resonances, the shape and intensity of which are rather temperature insensitive, are attributed to two species of paramagnetic molybdenum. In dithionite-reduced enzyme all these lines are saturated at the same microwave power of 15 mW. This is not the case in oxidized enzyme, where the resonance at g = 2.02 is hard to saturate. Addition of nitrate to dithionite-reduced reductase I decreases the intensity of the EPR lines to about that of oxidized enzyme. The participation of molybdenum in the electron transfer process has been discussed. 3. At 18 degrees K the oxidized enzyme exhibits an axial-symmetrical signal with g parallel = 2.10 and g = 2.03, and a signal with unknown symmetry at g = 2.015. Upon reduction by dithionite, a ferredoxin type of signal is observed with g values at 2.05, 1.95 and 1.88, while the g = 2.015 signal disappears. Reoxidation by nitrate causes a concomitant disappearance of the ferredoxin type of signal and reappearance of the g = 2.015 signal; hence iron-sulfur centres participate in the transfer of electrons to nitrate. 4. Nitrate reductase II, containing only two (Mr 117 000 and 57 000) of the three subunits found in nitrate reductase I and lacking the tightly bound iron, does not exhibit the axial-symmetrical signal (g = 2.10 and 2.03). Thus, it suggested that this signal in nitrate reductase I stems from an iron centre in the low-molecular weight subunit (Mr 52 000). 5. Inhibition studies confirm the participation of metals in the transfer of electrons from reduced benzylviologen to nitrate and show that the binding sites for these substrates are different.  相似文献   

13.
To develop a novel yeast whole-cell biocatalyst by yeast surface display technology that can hydrolyze chitin, the chitinaseC gene from Serratia marcescens AS1.1652 strain was cloned and subcloned into the yeast surface display plasmid pYD1, and the recombinant plasmid pYD1/SmchiC was electroporated into Saccharomyces cerevisiae EBY100 cell. Aga2p-SmChiC fusion protein was expressed and anchored on the yeast cell surface by induction with galactose, which was verified by indirect immunofluorescence and Western blotting. The chitinolytic activity of the yeast whole-cell biocatalyst or partially purified enzyme was detected by agar plate clear zone test, SDS-PAGE zymography and dinitrosalicylic acid method. The results showed that the chitinaseC gene from S. marcescens AS1.1652 strain was successfully cloned and expressed on the yeast cell surface, Aga2p-SmChiC fusion protein with molecular weight (67 kDa) was determined. Tests on the effect of temperature and pH on enzyme activity and stability revealed that the yeast whole-cell biocatalyst and partially purified enzyme possessed both thermal stability and activity, and even maintained some activity under acidic and weakly alkaline conditions. The optimum reaction temperature and pH value were set at 52 °C and 5.0, respectively. Yeast surface display technology succeeded in preparing a yeast whole-cell biocatalyst with chitinolytic activity, and the utilization of chitin could benefit from this process of enzyme preparation.  相似文献   

14.
Nitrite oxidoreductase, the essential enzyme complex of nitrite oxidizing membranes, was isolated from cells of the nitrifying bacterium Nitrobacter hamburgensis. The enzyme system was solubilized and purified in the presence of 0.25% sodium deoxycholate. Nitrite oxidoreductase oxidized nitrite to nitrate in the presence of ferricyanide. The pH optimum was 8.0, and the apparent K m value for nitrite amounted to 3.6 mM. With reduced methyl-and benzylviologen nitrite oxidoreductase exhibited nitrate reductase activity with an apparent K m value of 0.9 mM for nitrate. NADH was also a suitable electron donor for nitrate reduction. The pH optimum was 7.0.Treatment with SDS resulted in the dissociation into 3 subunits of 116,000, 65,000 and 32,000. The enzyme complex contained iron, molydbenum, sulfur and copper. A c-type cytochrome was present. Isolated nitrite oxidoreductase is a particle of 95±30 Å in diameter.Abbreviation DOC sodium deoxycholate  相似文献   

15.
An heterologous transformation system for entomopathogenic fungi B. bassiana and M. anisopliae was developed based on the use of A. nidulans nitrate reductase gene (niaD). B. bassiana and M. anisopliae niaD stable mutants were selected by treatment of protoplast with ethane methane sulphonate (EMS) and regenerated on chlorate medium. The cloned gene was capable of transforming B. bassiana and M. anisopliae at a frequency of 5.8 to 20 transformants per microg of DNA. Most of them were mitotically stable.  相似文献   

16.
Properties of a nitrate reductase of Chlorella   总被引:8,自引:0,他引:8  
  相似文献   

17.
We have isolated from a laboratory strain of Rhodopseudomonas capsulata a spontaneous mutant possessing a dissimilatory NO3 reductase activity. Reduction of NO3 under dark and anaerobic conditions generated a membrane potential, and was inhibited by rotenone, oxygen and illumination.  相似文献   

18.
Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrite uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.Abbreviations EDTA ethylenediaminetetraacetic acid - FAD flavine-adenine dinucleotide - IgG immunoglobulin G - NR nitrate reductase - PM plasma membrane - TX-100 Triton X-100  相似文献   

19.
Molybdenum is required for induction of nitrate reductase and of NAD-linked formate dehydrogenase activities in suspensions of wild type Paracoccus denitrificans; tungsten prevents the development of these enzyme activities. The wild type forms a membrane protein M r150,000 when incubated with tungsten and inducers of nitrate reductase and this is presumed to represent an inactive form of the enzyme. Suspensions of mutant M-1 did not develop nitrate reductase or formate dehydrogenase activities but the membrane protein M r150,000 was formed under all conditions tested, including without inducers and without molybdenum. Analysis of membranes, solubilized with deoxycholate, by polyacrylamide gel electrophoresis under nondenaturing conditions showed that the mutant protein had similar electrophoretic mobility to the active nitrate reductase formed by the wilde type. Autoradiography of preparations from cells incubated with 55Fe showed that the mutant and wild type proteins contained iron. However, in similar experiments with 99Mo, incorporation of molybdenum into the mutant protein was not detectable.We conclude that mutant M-1 is defective in one or more steps required to process molybdenum for incorporation into molybdoenzymes. This failure affects the normal regulation of nitrate reductase protein with respect to the role of inducers.Non-Standard Abbreviations DOC deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

20.
The in vitro synthesis of chalcones has been demonstrated using a special biphasic enzyme assay. The highly viscous lower phase in this assay stems from a tapetum fraction of anthers of Tulipa cv. “Apeldoorn” which has been used an enzyme source. The upper phase of this system consists of a reaction mixture of the normal “flavanone synthase” assay. It is suggested that chalcone synthesis occurs at the boundary layer between the two phases. To prevent spontaneous as well as enzymatic cyclization of the chalcones formed (phloroglucinyl type), the pH of the upper phase must not be allowed to exceed pH 4.0. Under these pH conditions, chalcone formation by a reverse reaction of chalcone-flavanone isomerase can be excluded. The measured substrate specificity of the “chalcone synthase” corresponds to the conditions of chalcone formation in the natural system. Using p-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA, respectively, as substrates, the enzyme system forms the correspondingly substituted chalcones which are also accumulated in the loculus of tulip anthers. It is suggested that this chalcone synthase is identical to the previously described “flavanone synthase”. The results can be further explained as follows. (i) Not flavanones, but rather chalcones are the first C15 intermediates of flavonoid biosynthesis in tulip anthers. (ii) In this Tulipa system, the substitution pattern of three different hydroxycinnamic acids can be transferred unchanged into the flavonoid C15 stage. (iii) The role of chalcone-flavanone isomerase is to cyclize chalcones to flavanones on the direct biosynthetic pathway to the further accumulated flavonol glycosides. (iv) The sensitivity of the reaction with regard to chalcone production points to the localization of chalcone synthase in a most unstable and, up to now, unknown tapetal compartment. Since purification of the enzyme results in exclusive production of flavanones, it is suggested that certain “chalcone stabilizing factors” must occur in the natural system. (v) The phenomenon of chalcone accumulation in tulip anthers, however, must be caused by a complex system, distinguished by cooperation of certain biochemical and physiological conditions, and, finally, by special compartmentation of the enzymes which are responsible for the biosynthesis of flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号