共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have shown that suspension-cultured cells of Solanum genotypes with various polygenic resistances to Phytophthora infestans differed in activities of early oxidative processes in response to culture filtrate (CF) from this pathogen. These studies have now been extended by analysing production of reactive oxygen species (ROS), lipid peroxidation and Lipoxygenase (LOX, E.C.1.13.11.12) activity induced by CF in detached leaves of S. tuberosum cv Bzura and clone H-8105, polygenically resistant and susceptible, respectively, as well as S. nigrum, nonhost, completely resistant. The relative increase in the ROS production was higher in the susceptible clone H-8105 than in both resistant genotypes. Lipid peroxidation increased only in the nonhost S. nigrum. An increase in lipid peroxidation in S. nigrum leaves coincided with enhanced LOX activity. In both S. tuberosum genotypes, significant increases in LOX activity were delayed and unaccompanied by changes in the level of lipid peroxidation. LOX activity attained a higher level in both of the resistant genotypes than in the susceptible one. The present results suggest that the involvement of both ROS production and LOX activity in the defense strategy in Solanum species/P. infestans interactions. 相似文献
2.
M. Behnke 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1980,56(4):151-152
Summary Resistance of potato leaflets to culture filtrates of Phytophthora infestans is correlated with lower growth of the congenial parasite but not with lower sporulation. 相似文献
3.
Ewing Elmer E. Šimko Ivan Smart Christine D. Bonierbale Merideth W. Mizubuti Eduardo S.G. May Gregory D. Fry William E. 《Molecular breeding : new strategies in plant improvement》2000,6(1):25-36
Under controlled field conditions, a Solanum backcross population segregated for resistance to Phytophthora infestans. The population (`BCT') had been derived previously by crossing the Solanum tuberosum dihaploid USW2230 × Solanum berthaultii PI473331 to obtain the hybrid M200-30, and then backcrossing the hybrid to the S. tuberosum dihaploid HH1-9. Resistance was assessed from analyses of epidemics in small plots of each individual genotype, and data were recorded as area under the disease progress curve (AUDPC). The parents of the original cross (USW2230 and a selection from PI473331) were not included in the test, but the hybrid was incompatible and HH1-9 was compatible with the tester strain of P. infestans (US-8 lineage). Somewhat more than half of the progeny also were incompatible with the tester strain, indicating the presence of an R gene. This gene segregated from the S. berthaultii parent and mapped 4.8 cm from the RFLP marker TG63 on chromosome 10. We deduce that the R gene is not R-1, R-2, R-3, R-6, or R-7 and is probably not R-4, R-5, or R-10. Among the remaining, compatible progeny, there was a wide range of quantitative resistance. All were more resistant than the susceptible cultivar Superior, and most individuals were much more resistant than the moderately resistant cultivar Kennebec. AUDPC values among the sub-population of compatible genotypes ranged from about 400 to 1500 units the first year and from 400 to 1760 units the second year. At least five quantitative trait loci (QTLs) were detected in this sub-population in both 1997 and 1998, including one detected through segregation of alleles from both the hybrid parent and the recurrent S. tuberosum parent. A model of main and epistatic effects explained 56% and 66% of the variation observed for quantitative resistance to late blight in 1997 and 1998, respectively. Several of the QTLs for late blight resistance were located in regions of the genome to which QTLs for late maturity have previously been mapped. 相似文献
4.
M. Behnke 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1979,55(2):69-71
Summary Dihaploid calli from Solanum tuberosum were selected, which were resistant to the culture filtrate of Phytophthora infestans. Each of the resistant calli was resistant to all four pathotypes of Phytophthora used in these experiments. The resistance was not lost through regeneration and the induction of new callus. 相似文献
5.
The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating oomycete
pathogen Phytophthora infestans, causal agent of late blight disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic
plants such as oregano (Origanum syriacum var. bevanii), thyme (Thymbra spicata subsp. spicata), lavender (Lavandula stoechas subsp. stoechas), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and laurel (Laurus nobilis), were investigated against P. infestans. Both contact and volatile phase effects of different concentrations of the essential oils used were determined by using
two in vitro methods. Chemical compositions of the essential oils were also determined by GC-MS analysis. Major compounds found in essential
oils of thyme, oregano, rosemary, lavender, fennel and laurel were carvacrol (37.9%), carvacrol (79.8), borneol (20.4%), camphor
(20.2%), anethole (82.8%) and 1,8-cineole (35.5%), respectively. All essential oils were found to inhibit the growth of P. infestans in a dose-dependent manner. Volatile phase effect of oregano and thyme oils at 0.3 μg/ml air was found to completely inhibit the growth of P. infestans. Complete growth inhibition of pathogen by essential oil of fennel, rosemary, lavender and laurel was, however, observed
at 0.4–2.0 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, oregano, thyme and
fennel oils at 6.4 μg/ml were found to inhibit the growth of P. infestans completely. Essential oils of rosemary, lavender and laurel were inhibitory at relatively higher concentrations (12.8, 25.6,
51.2 μg/ml respectively). Volatile phase effects of essential oils were consistently found to be more effective on fungal growth
than contact phase effect. Sporangial production was also inhibited by the essential oil tested. Light and scanning electron
microscopic (SEM) observation on pathogen hyphae, exposed to both volatile and contact phase of oil, revealed considerable
morphological alterations in hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage. 相似文献
6.
Jolanta Floryszak-Wieczorek Halina Gniazdowska-Skoczek 《Acta Physiologiae Plantarum》2001,23(2):207-212
Local treatment of potato plants with arachidonic acid caused a repeated increase of ribonuclease and proteinase activities
in leaves that were directly sprayed with this inducer. Immunization caused no significant systemic changes in the enzyme
activity of other potato leaves.
However, leaves above the induction zone in the first days after the challenge were found to have a pronounced ribonuclease
activity increase in comparison to that gradually rising with disease development in inoculated leaves from plants that were
not induced. The proteolytic activity in the leaves of immunized plants after the challenge was decisively on a lower level
than that in the leaves of noninduced plants subjected to inoculation. 相似文献
7.
Inhibitory effect of a defensin gene from the Andean crop maca (Lepidium meyenii) against Phytophthora infestans 总被引:1,自引:0,他引:1
In this study, we report the isolation of a defensin gene, lm-def, isolated from the Andean crop 'maca' (Lepidium meyenii) with activity against the pathogen Phytophthora infestans responsible of late blight disease of the potato and tomato crops. The lm-def gene has been isolated by polymerase chain reaction (PCR) using degenerate primers corresponding to conserved regions of 13 plant defensin genes of the Brassicaceae family assuming that defensin genes are highly conserved among cruciferous species. The lm-def gene belongs to a small multigene family of at least 10 members possibly including pseudogenes as assessed by genomic hybridization and nucleotide sequence analyses. The deduced mature Lm-Def peptide is 51 amino acids in length and has 74-94% sequence identity with other plant defensins of the Brassicaceae family. The Lm-Def peptide was produced as a fusion protein using the pET-44a expression vector and purified using an immobilized metal ion affinity chromatography. The recombinant protein (NusA:Lm-Def) exhibited in vitro activity against P. infestans. The NusA:Lm-Def protein caused growth inhibition and hyphal damage at concentration not greater than 0.4 microM. In contrast, the NusA protein alone expressed and purified similarly did not show any activity against P. infestans. Therefore, these results indicate that the lm-def gene isolated from maca belong to the plant defensin family with activity against P. infestans. Its expression in potato, as a transgene, might help to control the late blight disease caused by P. infestans with the advantage of being of plant origin. 相似文献
8.
The R1 gene conferring race-specific resistance to Phytophthora infestans in potato is located on potato chromosome V. 总被引:5,自引:0,他引:5
Christiane Leonards-Schippers Werner Gieffers Francesco Salamini Christiane Gebhardt 《Molecular & general genetics : MGG》1992,233(1-2):278-283
Summary Late blight in potato is caused by the fungusPhytophthora infestans and can inflict severe damage on the potato crop. Resistance toP. infestans is either based on major dominantR genes conferring vertical, race-specific resistance or on minor genes inducing horizontal, unspecific resistance. A dihaploid potato line was identified which carried theR1 gene, conferring vertical resistance to allP. infestans races, with the exception of those homozygous for the recessive virulence allele of the locusV1. The F1 progeny of a cross between this resistant parent P(R1) and P(r), a line susceptible to all races, was analysed for segregation ofR1 and of restriction fragment length polymorphism (RFLP) markers distributed on the potato RFLP map comprising more than 300 loci. TheR1 locus was mapped to chromosome V in the interval between RFLP markers GP21 and GP179. The map position ofR1 was found to be very similar to the one ofRx2, a dominant locus inducing extreme resistance to potato virus X. 相似文献
9.
10.
11.
L. J. Spielman B. J. McMaster W. E. Fry 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,77(6):832-838
Summary In this study we investigated the genetic control of virulence in the diploid fungal pathogen, Phytophthora infestans, against host resistance genes R1, R2, R3, and R4 (potato) and Ph1 (tomato). For four of these virulence traits, the presence or absence of segregation indicated conclusively which phenotype was dominant. We observed a 31 (virulentavirulent) segregation on R2 in the progeny of parents which were both virulent, suggesting that virulence is dominant and both parents are heterozygous. In a cross in which one parent was virulent and the other avirulent on potato gene R3, all progeny tested were avirulent, so avirulence against R3 is dominant. The same virulent parent crossed with a different avirulent parent produced virulent and avirulent progeny in a 13 ratio, indicating that a second locus may be involved. The progeny of two parents virulent on R4 segregated for virulence and avirulence, so virulence against R4 is dominant. For Ph1, a 13 segregation in the progeny of two avirulent parents showed that the avirulent phenotype is dominant, and a 31 ration in a second cross suggested the involvement of a second locus. The segregations for virulence against R1 did not indicate which phenotype was dominant, but did suggest singlelocus control. 相似文献
12.
13.
Polkowska-Kowalczyk L Montillet JL Agnel JP Triantaphylidès C Wielgat B Maciejewska U 《Journal of plant physiology》2008,165(18):1929-1939
The initial phase of the lipid peroxidation process in leaves of Solanum nigrum var. gigantea, Solanum tuberosum cv Bzura and clone H-8105, which represent non-host resistance, field resistance and susceptibility, respectively, against Phytophthora infestans, was investigated. Based on quantitative and qualitative high-performance liquid chromatography (HPLC) analyses of free and esterified fatty acid hydroperoxides (FAHs), we characterized the lipid peroxidation process induced by the pathogen-derived elicitor, culture filtrate (CF), in leaves of the studied genotypes. In all plants, FAHs generated due to 13-lipoxygenase (LOX) action dominated over those from the non-enzymatic pathway. The FAHs derived from 9-LOX activity were found only in CF-treated leaves of the non-host resistant S. nigrum. However, experiments in vitro and in planta with exogenous linoleic acid (LA) as a substrate for LOX revealed high constitutive activity of 9-LOX in all genotypes, which increased in response to CF treatment. The time course changes in polyunsaturated fatty acid (PUFA) pools in the total lipid fractions as well as the degree of their oxidation suggested that CF-induced PUFA peroxidation was enhanced mostly in S. nigrum, less so in Bzura and least in the susceptible clone H-8105. The obtained results are discussed in light of the overall biochemical cell status of plants in the studied interactions. 相似文献
14.
15.
An in planta induced gene of Phytophthora infestans (the causal organism of potato late blight) was selected from a genomic library by differential hybridization using labelled cDNA derived from poly(A)+ RNA of P. infestans grown in vitro and labelled cDNA made from potato-P. infestans interaction poly(A)+ RNA as probes. Sequence analysis showed that the gene codes for ubiquitin, a highly conserved protein which plays an important role in several cellular processes. The structure of the polyubiquitin gene (designated ubi3 R) is consistent with the structure of other known polyubiquitin genes. It consists of three repeats in a head-to-tail arrangement without intervening sequences, each encoding a ubiquitin unit of 76 amino acids. The last ubiquitin unit is followed by an extra asparagine residue at the carboxy-terminal end. Northern and Southern blot analyses revealed that the polyubiquitin gene is a member of a multigene family, all genes of which show induced expression in planta. 相似文献
16.
Buarque DS Spindola LM Martins RM Braz GR Tanaka AS 《Biochemical and biophysical research communications》2011,(2):241-247
The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS–PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (Ki = 3.29 nM) and human cathepsin L (Ki = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan. 相似文献
17.
Brunner F Wirtz W Rose JK Darvill AG Govers F Scheel D Nürnberger T 《Phytochemistry》2002,59(7):689-696
An 85-kDa beta-glucosidase/xylosidase (BGX1) was purified from the axenically grown phytopathogenic oomycete, Phytophthora infestans. The bgx1 gene encodes a predicted 61-kDa protein product which, upon removal of a 21 amino acid leader peptide, accumulates in the apoplastic space. Extensive N-mannosylation accounts for part of the observed molecular mass difference. BGX1 belongs to family 30 of the glycoside hydrolases and is the first such oomycete enzyme deposited in public databases. The bgx1 gene was found in various Phytophthora species, but is apparently absent in species of the related genus, Pythium. Despite significant sequence similarity to human and murine lysosomal glucosylceramidases, BGX1 demonstrated neither glucocerebroside nor galactocerebroside-hydrolyzing activity. The native enzyme exhibited glucohydrolytic activity towards 4-methylumbelliferyl (4-MU) beta-D-glucopyranoside and, to lesser extent, towards 4-MU-D-xylopyranoside, but not towards 4-MU-beta-D-glucopyranoside. BGX1 did not hydrolyze carboxymethyl cellulose, cellotetraose, chitosan or xylan, suggesting high substrate specificity and/or specific cofactor requirements for enzymatic activity. 相似文献
18.
A glutathione transferase (GST) related to the theta (T) class of enzymes found in plants and animals has been cloned from the potato pathogen Phytophthora infestans. The cDNA encoded a 25kDa polypeptide termed PiGSTT1 which was expressed in E. coli as the native protein. The purified recombinant enzyme behaved as a dimer (PiGSTT1-1) and while being unable to catalyse the glutathione conjugation of 1-chloro-2,4-dintrobenzene, was highly active as a glutathione peroxidase with organic hydroperoxide substrates. In addition to reducing the synthetic substrate cumene hydroperoxide, PiGSTT1-1 was shown to be highly active toward 9(S)-hydroperoxy-(10E,12Z,15Z)-octadecatrienoic acid=9(S)-HPOT, which is formed in potato plants during infection by P. infestans as a precursor of the antifungal oxylipin colnelenic acid. An antiserum was raised to PiGSTT1-1 and used to demonstrate that the respective enzyme was abundantly expressed in P. infestans both cultured on pea agar and during the infection of potato plants. 相似文献