首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Y T Yu  M D Shu    J A Steitz 《The EMBO journal》1998,17(19):5783-5795
Among the spliceosomal snRNAs, U2 has the most extensive modifications, including a 5' trimethyl guanosine (TMG) cap, ten 2'-O-methylated residues and 13 pseudouridines. At short times after injection, cellularly derived (modified) U2 but not synthetic (unmodified) U2 rescues splicing in Xenopus oocytes depleted of endogenous U2 by RNase H targeting. After prolonged reconstitution, synthetic U2 regenerates splicing activity; a correlation between the extent of U2 modification and U2 function in splicing is observed. Moreover, 5-fluorouridine-containing U2 RNA, a potent inhibitor of U2 pseudouridylation, specifically abolishes rescue by synthetic U2, while rescue by cellularly derived U2 is not affected. By creating chimeric U2 molecules in which some sequences are from cellularly derived U2 and others are from in vitro transcribed U2, we demonstrate that the functionally important modifications reside within the 27 nucleotides at the 5' end of U2. We further show that 2'-O-methylation and pseudouridylation activities reside in the nucleus and that the 5' TMG cap is not necessary for internal modification but is crucial for splicing activity. Native gel analysis reveals that unmodified U2 is not incorporated into the spliceosome. Examination of the U2 protein profile and glycerol-gradient analysis argue that U2 modifications directly contribute to conversion of the 12S to the 17S U2 snRNP particle, which is essential for spliceosome assembly.  相似文献   

2.
An in vitro reconstitution/splicing complementation system has been developed which has allowed the investigation of the role of mammalian U2 and U5 snRNP components in splicing. U2 or U5 snRNP cores are first reconstituted from purified native snRNP core proteins and snRNA in the absence of cellular extract and are subsequently added to splicing extracts depleted of either U2 or U5 snRNP. When snRNPs reconstituted with HeLa U2 or U5 snRNA were added to U2- or U5-depleted nuclear extract, splicing was complemented. Addition of naked snRNA, on the other hand, did not restore splicing, demonstrating that the core proteins are essential for both U2 and U5 snRNP functions in splicing. Hybrid U2 or U5 snRNPs, reconstituted with core proteins isolated from U1 or U2 snRNPs, were equally active in splicing complementation, indicating that the snRNP core proteins are functionally interchangeable. U5 snRNPs reconstituted from in vitro transcribed U5 snRNA restored splicing to a level identical to that observed with particles reconstituted from authentic HeLa U5 snRNA. In contrast, splicing could not be restored to U2-depleted extract by the addition of snRNPs reconstituted from synthetic U2 snRNA, suggesting that U2 snRNA base modifications are essential for U2 snRNP function.  相似文献   

3.
Zhao X  Li ZH  Terns RM  Terns MP  Yu YT 《RNA (New York, N.Y.)》2002,8(12):1515-1525
U2 is the most extensively modified of all spliceosomal snRNAs. We previously showed that at least some of the internally modified nucleotides in U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing. Recent work from several laboratories suggests that nuclear guide RNAs facilitate U2 snRNA internal modification, including pseudouridylation and 2'-O-methylation. Here, we present a novel approach to identifying guide RNAs for U2 pseudouridylation. Several Xenopus oocyte nuclear RNAs were affinity selected with U2 snRNA substituted with 5-fluorouridine, a pseudouridylation inhibitor that sequesters pseudouridylases. One of these RNAs was sequenced and found to be a novel RNA of 134 nt. This small RNA contains an H/ACA motif and folds into a typical H/ACA RNA structure, and its authenticity as an H/ACA RNA was confirmed by immunoprecipitation analysis. The RNA contains two guide sequences for pseudouridylation (psi) of U2 snRNA at positions 34 and 44 in the branch-site recognition region, and we demonstrate that this RNA indeed guides the formation of psi34 and psi44 in U2 using a Xenopus oocyte reconstitution system. Therefore, this novel RNA was designated pugU2-34/44, for pseudouridylation guide for U2 snRNA U34 and U44. Intranuclear localization analyses indicate that pugU2-34/44 resides within the nucleoplasm rather than nucleoli or Cajal bodies where other guide RNAs have been localized. Our results clarify the mechanism of U2 snRNA pseudouridylation in Xenopus oocytes, and have interesting implications with regard to the intranuclear localization of U2 snRNA pseudouridylation.  相似文献   

4.
5.
Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre‐mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre‐mRNA splicing, leading to growth‐deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA‐dependent ATPase involved in monitoring the U2 BSRR‐branch site base‐pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre‐mRNA splicing by directly altering the binding/ATPase activity of Prp5.  相似文献   

6.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

7.
5-fluorouracil (5FU) is an effective anti-cancer drug, yet its mechanism of action remains unclear. Here, we examine the effect of 5FU on pre-mRNA splicing in vivo. Using RT–PCR, we show that the splicing of a number of pre-mRNAs is inhibited in HeLa cells that have been exposed to a low dose of 5FU. It appears that this inhibitory effect is not due to its incorporation into pre-mRNA, because partially or fully 5FU-substituted pre-mRNA, when injected into Xenopus oocytes, is spliced just as well as is the unsubstituted pre-mRNA. Detailed analyses of 5FU-treated cells indicate that 5FU is incorporated into U2 snRNA at important naturally occurring pseudouridylation sites. Remarkably, 5FU incorporation effectively blocks the formation of important pseudouridines in U2 snRNA, as only a trace of pseudouridine is detected when cells are exposed to a low dose of 5FU for 5 days. Injection of the hypopseudouridylated HeLa U2 snRNA into U2-depleted Xenopus oocytes fails to reconstitute pre-mRNA splicing, whereas control U2 isolated from untreated or uracil-treated HeLa cells completely reconstitutes the splicing. Our results demonstrate for the first time that 5FU incorporates into a spliceosomal snRNA at natural pseudouridylation sites in vivo, thereby inhibiting snRNA pseudouridylation and splicing. This mechanism may contribute substantially to 5FU-mediated cell death.  相似文献   

8.
We have developed an in vitro complementation assay to analyse the functions of U6 small nuclear RNA (snRNA) in splicing and in the assembly of small nuclear ribonucleoproteins (snRNPs) and spliceosomes. U6-specific, biotinylated 2'-OMe RNA oligonucleotides were used to deplete nuclear extract of the U4/U6 snRNP and to affinity purify functional U4 snRNP. The addition of affinity purified U4 snRNP together with U6 RNA efficiently restored splicing activity, spliceosome assembly and U4/U5/U6 multi-snRNP formation in the U4/U6-depleted extract. Through a mutational analysis we have obtained evidence for multiple sequence elements of U6 RNA functioning during U4/U5/U6 multi-snRNP formation, spliceosome assembly and splicing. Surprisingly, the entire 5' terminal domain of U6 RNA is dispensable for splicing function. In contrast, two regions in the central and 3' terminal domain are required for the assembly of a functional U4/U5/U6 multi-snRNP. Another sequence in the 3' terminal domain plays an essential role in spliceosome assembly; a model is strongly supported whereby base pairing between this sequence and U2 RNA plays an important role during assembly of a functional spliceosome.  相似文献   

9.
J Hamm  N A Dathan  D Scherly    I W Mattaj 《The EMBO journal》1990,9(4):1237-1244
Domains of U1 snRNA which are functionally important have been identified using a splicing complementation assay in Xenopus oocytes. Mutations in, and deletions of, all three of the hairpin loop structures near the 5' end of the RNA are strongly deleterious. Similarly, mutation of the Sm binding site abolishes complementation activity. Analysis of the protein binding properties of the mutant U1 snRNAs reveals that three of the functionally important domains, the first two hairpin loops and the Sm binding site, are required for interaction with U1 snRNP proteins. The fourth functionally important domain does not detectably affect snRNP protein binding and is not evolutionarily conserved. All of the deleterious mutations are shown to have similar effects on in vivo splicing complex formation.  相似文献   

10.
Functional reconstitution of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was performed using in vitro transcribed U1 snRNA. Hela cell nuclear extract was depleted of its constituent snRNPs by centrifugation at 100,000 X g. The supernatant was devoid of snRNAs and lacked cleavage activity in splicing reactions using in vitro transcribed beta-globin pre-mRNA as substrate. The resulting pellet which contained the snRNAs, retained 5' splice site cleavage activity in a similar splicing reaction. Supplementation of the inactive supernatant fraction with in vitro transcribed U1 snRNA, partially restored 5' splice site cleavage activity thereby demonstrating the specific requirement of U1 snRNP in the initial stage of pre-mRNA splicing.  相似文献   

11.
U2 snRNA, a key player in nuclear pre-mRNA splicing, contains a 5'-terminal m3G cap and many internal modifications. The latter were shown in vertebrates to be generally required for U2 function in splicing, but precisely which residues are essential and their role in snRNP and/or spliceosome assembly is presently not clear. Here, we investigated the roles of individual modified nucleotides of HeLa U2 snRNA in pre-mRNA splicing, using a two-step in vitro reconstitution/complementation assay. We show that the three pseudouridines and five 2'O-methyl groups within the first 20 nucleotides of U2 snRNA, but not the m3G cap, are required for efficient pre-mRNA splicing. Individual pseudouridines were not essential, but had cumulative effects on U2 function. In contrast, four of five 2'O-methylations (at positions 1, 2, 12, and 19) were individually required for splicing. The in vitro assembly of 17S U2 snRNPs was not dependent on the presence of modified U2 residues. However, individual internal modifications were required for the formation of the ATP-independent early spliceosomal E complex. Our data strongly suggest that modifications within the first 20 nucleotides of U2 play an important role in facilitating the interaction of U2 with U1 snRNP and/or other factors within the E complex.  相似文献   

12.
We have established an in vitro reconstitution/splicing complementation system which has allowed the investigation of the role of mammalian U1 snRNP components both in splicing and at the early stages of spliceosome formation. U1 snRNPs reconstituted from purified, native snRNP proteins and either authentic or in vitro transcribed U1 snRNA restored both early (E) splicing complex formation and splicing-activity to U1-depleted extracts. In vitro reconstituted U1 snRNPs possessing an m3G or ApppG cap were equally active in splicing, demonstrating that a physiological cap structure is not absolutely required for U1 function. However, the presence of an m7GpppG or GpppG cap was deleterious to splicing, most likely due to competition for the m7G cap binding proteins. No significant reduction in splicing or E complex formation was detected with U1 snRNPs reconstituted from U1 snRNA lacking the RNA binding sites of the U1-70K or U1-A protein (i.e., stem-loop I and II, respectively). Complementation studies with purified HeLa U1 snRNPs lacking subsets of the U1-specific proteins demonstrated a role for the U1-C, but not U1-A, protein in the formation and/or stabilization of early splicing complexes. Studies with recombinant U1-C protein mutants indicated that the N-terminal domain of U1-C is necessary and sufficient for the stimulation of E complex formation.  相似文献   

13.
We have investigated the nuclear transport of U1 and U5 snRNPs by microinjection studies in oocytes from Xenopus laevis using snRNP particles prepared by reconstitution in vitro. Competition studies with snRNPs showed that the Sm core domain of U1 snRNPs contains a nuclear location signal that acts independently of the m3G cap. The transport of U1 snRNP can be blocked by saturation with competitor U1 snRNPs or by U5 snRNPs, which indicates that the signals on the respective Sm core domains interact with the same transport receptors. Further, by using a minimal U1 snRNP particle reconstituted in vitro and containing only the Sm core RNP domain and lacking stem-loops I to III of U1 RNA, we show that this is targeted actively to the nucleus, in spite of the absence of the m3G cap. This indicates that under certain conditions the NLS in the Sm core domain not only is an essential, but may also be a sufficient condition for nuclear targeting. We propose that the RNA structure of a given snRNP particle determines at least in part whether the particle's m3G cap is required for nuclear transport or can be dispensed with.  相似文献   

14.
We have developed an in vitro splicing complementation assay to investigate the domain structure of the mammalian U4 small nuclear RNA (snRNA) through mutational analysis. The addition of affinity-purified U4 snRNP or U4 RNA to U4-depleted nuclear extract efficiently restores splicing activity. In the U4-U6 interaction domain of U4 RNA, only stem II was found to be essential for splicing activity; the 5' loop is important for spliceosome stability. In the central domain, we have identified a U4 RNA sequence element that is important for splicing and spliceosome assembly. Surprisingly, an intact Sm domain is not essential for splicing in vitro. Our data provide evidence that several distinct regions of U4 RNA contribute to snRNP assembly, spliceosome assembly and stability, and splicing activity.  相似文献   

15.
16.
17.
18.
Biotinylated 2'-OMe RNA oligonucleotides complementary to two separate regions of human U2 snRNA have been used as affinity probes to study U2 snRNP--pre-mRNA interactions. Both oligonucleotides bind specifically and allow highly selective removal of U2 snRNP from HeLa cell nuclear extracts. Pre-mRNA substrates can also be specifically affinity selected through oligonucleotides binding to U2 snRNP particles in splicing complexes. Stable binding of U2 snRNP to pre-mRNA is blocked by the pre-binding of an oligonucleotide to the branch site complementary region of U2 snRNA, but not by an oligonucleotide binding to the 5' terminus of U2. Both oligonucleotides affinity select the intron product, but not the intron intermediate, when added after spliceosome assembly has taken place. The effect of 2'-OMe RNA oligonucleotides on splicing complex formation has been used to demonstrate that complexes containing U2 snRNP and unspliced pre-mRNA are precursors to functional spliceosomes.  相似文献   

19.
20.
Functional domains within the mammalian U2 snRNP particle that are required for pre-mRNA splicing have been analysed using antisense oligonucleotides. A comparison of the melting temperatures of duplexes formed between RNA and different types of antisense oligonucleotides has demonstrated that the most stable hybrids are formed with probes made of 2'-O-allyl RNA incorporating the modified base 2-aminoadenine. We have therefore used these 2'-O-allyl probes to target sequences within the central domain of U2 snRNA. Overlapping biotinylated 2'-O-allyloligoribonucleotides complementary to the stem loop Ila region of U2 snRNA (nucleotides 54-72) specifically affinity selected U2 snRNA from HeLa nuclear extracts. These probes inhibited mRNA production in an in vitro splicing assay and caused a concomitant accumulation of splicing intermediates. Little or no inhibition of spliceosome assembly and 5' splice site cleavage was observed for all pre-mRNAs tested, indicating that the oligonucleotides were specifically inhibiting exon ligation. This effect was most striking with a 2'-O-allyloligoribonucleotide complementary to U2 snRNA nucleotides 57-68. These results provide evidence for a functional requirement for U2 snRNP in the splicing mechanism occurring after spliceosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号