首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.  相似文献   

2.
To increase the yield percent of prednisolone from hydrocortisone (cortisol), Bacillus pumilus E601 (a radioresistant microorganism) was incorporated into poly(vinyl alcohol) (PVA) cryogel grafted with hydroxyethyl-methacrylate (HEMA) as a crosslinking agent. The polymer was prepared by a radiation polymerization technique at 20 kGy from Co-60 source. The optimum temperature for the biotransformation of hydrocortisone by free cells, poly(PVA)/HEMA, and poly(PVA)/HEMA /N-isopropylacrylamide (N-IPAAm) was 30 °C. The highest yield % of prednisolone was obtained by immobilization of the cells on poly(PVA/HEMA), the addition of N-IPAAm to poly(PVA/HEMA) protected the immobilized cells from temperatures above 35 °C during the fermentation process. The optimal pH (buffered pH) of the biotransformation of hydrocortisone by immobilized and free cells was 7.0, but the maximum yield of prednisolone (60%) was obtained by immobilized cells in comparison with free cells (42%) also at pH 7.0. The prednisolone yield reached 60–65% with 1,2-propanediol cosolvent containing media and 60–62% in the case of ethanediol cosolvent containing media at 1% (v/v) of both cosolvents. 10 mg/50 ml Tween 80 the medium increased the prednisolone yield by only 1.1-fold compared with the control. The maximum bioconversion efficiency was obtained at a substrate concentration of 20 mg/50 ml medium. Stability studies showed that the immobilized cells can be used for seven times without any significant decrease in activity.  相似文献   

3.
The influence of pH and temperature on the substrate yield coefficient for growth of Saccharomyces cerevisiae in a chemostat under limited organic substrate conditions was studied. Mathematical analysis of the substrate yield coefficient as a function of pH and temperature in the near-optimal area was made. It was shown that the location of pH and temperature optima were independent of each other. The maximum substrate yield coefficient had the following coordinates: pH = 4.1, temperature = 28.5°C.  相似文献   

4.
A pilot scale whole cell process was developed for the enantioselective 1,2-reduction of prochiral alpha,beta-unsaturated ketone to (R) allylic alcohol using Candida chilensis. Initial development showed high enantiomeric excess (EE > 95%) but low product yield (10%). Process development, using a combination of statistically designed screening and optimization experiments, improved the desired alcohol yield to 90%. The fermentation growth stage, particularly medium composition and growth pH, had a significant impact on the bioconversion while process characterization identified diverse challenges including the presence of multiple enzymes, substrate/product toxicity, and biphasic cellular morphology. Manipulating the fermentation media allowed control of the whole cell morphology to a predominantly unicellular broth, away from the viscous pseudohyphae, which were detrimental to the bioconversion. The activity of a competing enzyme, which produced the undesired saturated ketone and (R) saturated alcohol, was minimized to < or =5% by controlling the reaction pH, temperature, substrate concentration, and biomass level. Despite the toxicity effects limiting the volumetric productivity, a reproducible and scaleable process was demonstrated at pilot scale with high enantioselectivity (EE > 95%) and overall yield greater than 80%. This was the preferred route compared to a partially purified process using ultra centrifugation, which led to improved volumetric productivity but reduced yield (g/day). The whole cell approach proved to be a valuable alternative to chemical reduction routes, as an intermediate step for the asymmetric synthesis of an integrin receptor antagonist for the inhibition of bone resorption and treatment of osteoporosis.  相似文献   

5.
研究了胰蛋白酶、Alcalase 碱性蛋白酶、木瓜蛋白酶对鲜鹿茸的降解过程,确定了优化降解工艺条件,具有一定的理论意义和实践价值。确定了Alcalase 碱性蛋白酶的降解效率最高,通过单因素实验确定了降解过程中底物浓度、酶解温度、pH值和酶解时间为影响鲜鹿茸降解率的主要因素。正交试验确定最佳的酶解条件为:底物浓度0.08 g/ml、酶解温度65 ℃、pH 9.0、酶解时间6.0 h。在此条件下,鲜鹿茸降解率高达92.6%,氨基酸产品收率达12.1%。  相似文献   

6.
The quantitative effects of pH, temperature, time of fermentation, sugar concentration, nitrogen concentration and potassium ferrocyanide on citric acid production were investigated using a statistical experimental design. It was found that palmyra jaggery (sugar syrup from the palmyra palm) is a suitable substrate for increasing the yield of citric acid using Aspergillus niger MTCC 281 by submerged fermentation. Regression equations were used to model the fermentation in order to determine optimum fermentation conditions. Higher yields were obtained after optimizing media components and conditions of fermentation. Maximum citric acid production was obtained at pH 5.35, 29.76 °C, 5.7 days of fermentation with 221.66 g of substrate/l, 0.479 g of ammonium nitrate/l and 2.33 g of potassium ferrocyanide/l.  相似文献   

7.
啤酒废水的厌氧发酵产氢   总被引:3,自引:0,他引:3  
对经热处理后的厌氧污泥利用啤酒废水厌氧产氢的影响因素(温度、初始pH值和有机物浓度)进行了研究。结果表明,温度与初始pH值对厌氧产氢过程均有显著影响。最佳温度为35℃,此时,比产氢速率、氢气产率、VFA含量与总糖降解率均达到最大,分别为10.16mL/g-VSS.h、0.1673mL/mg.COD、4640.0mg/L和95.20%。最适初始pH值为6.0~7.0,在此范围内氢气产率、VFA含量、总糖降解率均可获得最大值。一个半经验模型适用于描述初始pH值与氢气产率之间的相互关系。在35℃、初始pH值6.5的条件下,有机物浓度COD1000mg/L~2000mg/L时,总糖降解率与VFA产率均获得最大值。底物抑制模型分析结果显示COD1587mg/L时,氢气产率(0.1935mL/mg.COD)达到最大。  相似文献   

8.
High yielding mutant strain, Trichoderma reesei QM-9414, was employed for the cellulase enzyme production. Enzyme production conditions (pH, inoculum age and concentration, and organic supplements) were optimized. The ability of partially purified enzyme to hydrolyze various regionally abundant lignocellulosic raw materials was studied. Enzymatic hydrolysis conditions (temperature, pH, enzyme and substrate concentrations) were optimized. Temperature 50v°C, pH 4.5, enzyme concentration 40 FPU/g substrate and substrate concentration 2.5% were found to be optimum for the maximum yields of sugars. #-glucosidase supplementation was found to increase both the sugar yield and hydrolysis rate, and shorten the reaction time significantly.  相似文献   

9.
This study demonstrates a method to prepare an immobilized cellulase by using an electrospun polyacrylonitrile (PAN) nanofibrous membrane as the support. To obtain an immobilized cellulase with high hydrolytic activity, the immobilization conditions including activation time, enzyme concentration, immobilization time, and temperature were optimized. Under those conditions, the immobilized cellulase possessed a protein loading of 30 mg/g-support and a specific activity of 3.2 U/mg-protein. After immobilization, the enzymatic stability of cellulase against pH and thermal stresses was improved. Fourier transform infrared spectroscopy (FTIR) measurements also revealed that the cellulase was covalently bonded to the supports. The immobilized cellulase was then used to hydrolyze cell wall of microalgae for the production of reducing sugars. Analyses using response surface methodology (RSM) show that the hydrolysis yield was affected by the reaction temperature, pH, and substrate/cellulase mass ratio, and a hydrolysis yield of 60.86% could be obtained at 47.85 °C, pH 5.82, and a substrate/cellulase mass ratio of 40 g-substrate/g-cellulase. This result suggests that the proposed scheme for the cellulase immobilization has great potential for the application to the reducing sugar production.  相似文献   

10.
A biochemical engineering framework for optimizing the design and operation of fractional protein precipitation has been developed. The method utilizes a fractionation diagram to represent the purification of a product protein relative to total contaminating protein. The purification factor for a single or double-cut fractional precipitation is obtained as the gradient of an appropriate operating tie-line. A computer algorithm has been devised to maximize the tie-line gradient for a given yield enabling a plot of optimum purification factor versus yield to be constructed. The recovery of the enzyme alcohol dehydrogenase from clarified bakers homogenate using saturated ammonium sulphate has been examined. Fractionation and purification versus yield diagrams were used to investigate the effects of such process parameters as pH, temperature, and initial total protein concentration on fractionation efficiency. The results are discussed in terms of the underlying solubility and mixing phenomena and the industrial application of fractional precipitation.  相似文献   

11.
固定化嗜热脂肪芽孢杆菌连续合成半乳糖寡糖的研究   总被引:2,自引:0,他引:2  
利用固定了产β-半乳糖苷酶的嗜热脂肪芽孢杆菌,以乳糖为底物,在纤维床反应器中连续合成半乳糖寡糖(GOS),最高得率为50.7%。在连续反应体系中,研究了底物浓度、pH、反应温度和停留时间对半乳糖寡糖合成的影响,确定最佳反应条件为底物浓度450 g/L、反应温度55℃、pH7.0、停留时间100 min。在连续反应24h后,流加1.5%的D-半乳糖能提高合成GOS的能力,固定化细胞反应体系中连续稳定操作120 h。  相似文献   

12.
利用分光光度法对由纳豆菌发酵产生的纳豆激酶 (NK)进行了动力学性质的研究。以双倒数作图法 (L -B作图法 )求取Km。采用单因素试验法和正交试验法研究了底物浓度、酶浓度、温度、pH值对酶促反应速度的影响。结果表明该纳豆激酶的Km值为 3.4 98× 1 0 -6g·mL-1 ,当水解时间为 1 0min时 ,最适底物浓度为 1 6mg·mL-1 ,最适温度为 6 0℃ ,最适 pH为 8.0。  相似文献   

13.
A method for the preparation method of enzymes for shoyu making was studied. When enzyme proteins were extracted with water from a column of wheat bran koji culture of Aspergillus oryzae 460, the tailing phenomenon resulted in low recovery. However, a better yield was obtained by the use of the solution passed at the latter stage of extraction as the extraction liquid for the succeeding extraction. Thus, in case of leucine aminopeptidase (Leu-Gly-Gly as substrate) the extraction yield reached 89%. Considering the extraction yield, and the amount of alcohol required to precipitate enzyme proteins, an appropriate volume of extract was found to be 1.5 to 2 times the amount of wheat bran koji. Moreover, less sporulation of koji culture due to a shortening of the culture time to 48 h, or 38 h by the use of germinated spores as seed culture, resulted in less water repellence, and a higher yield of extraction of enzymes than in the old culture (58.5 h). The temperature of the mixture of extract and alcohol should be kept at 5°C to increase the yield of leucine aminopeptidase and acid carboxypeptidase. By the concentration of enzyme proteins through ultrafiltration, the use of alcohol could be reduced, and an enzyme preparation with high specific activity and recovery could be obtained.  相似文献   

14.
Enantioselective hydrolysis for the production of chiral styrene oxide was investigated using the epoxide hydrolase activity of a newly isolatedRhodosporidium kratochvilovae SYU-08. The effects of reaction prameters—buffer type, pH, temperature, initial substrate concentrations, phenyl-1,2-ethanediol concentrations on hydrolysis rate, and enantioselectivity—were analyzed. Optically active (S)-styrene oxide with an enantiomeric excess higher than 99 % was obtained from its racemate with a yield of 38 % (theoretically 50% maximum yield) from an initial concentration of 80 mM.  相似文献   

15.
The activity of a horse liver alcohol dehydrogenase catalysed reduction of cyclohexanone was investigated by using a central composite circumscribed design in which two parameters (pH and cyclohexanone concentration) were varied. By log transformation of the substrate concentration an adequate model could be obtained from which reliable kinetic constants and pH profiles were determined.  相似文献   

16.
HZ-841吸附树脂精制银杏叶总黄酮   总被引:4,自引:0,他引:4  
本文研究了用HZ-841吸附树脂精制银杏叶总黄酮的工艺。用10 BV 70%的乙醇分三次提取脱脂银杏叶粉中的银杏叶总黄酮,其收得率为4.8%,纯度为21.7%;用30BV纯净水、微波解冻提取30min,银杏叶总黄酮的收得率及纯度分别是2.63%和13.4%。HZ-841树脂对银杏叶总黄酮的动态吸附容量在pH=7.0时为0.265g/mL,树脂,动态吸附平衡时间为10min。酸度对HZ-841树脂吸附银杏叶总黄酮有显著影响,当pH=5.0时,其静态吸附量可达到0.322g/mL。吸附了银杏叶总黄酮的HZ-841树脂可用乙醇洗脱,当洗脱液pH=9.0、乙醇浓度为90%、洗脱流速3BV/h时,5BV洗脱液的收得率为1.8%。用无水乙醇洗脱的银杏叶总黄酮经过真空浓缩、干燥,获得的浅黄色粉末中银杏叶总黄酮含量为37.3%,产品收得率为2.41%。  相似文献   

17.
The effect of substrate concentration (sucrose) on the stability and yield of a continuous fermentative process producing hydrogen was studied. High substrate concentrations are attractive from an energy standpoint as they would minimise the energy required for heating. The reactor was a CSTR; temperature was maintained at 35 degrees C; pH was controlled between 5.2 and 5.3, and the hydraulic retention time (HRT) was 12 h. Online measurements were taken for ORP, pH, temperature, %CO2, gas output and %H2, and data logged using a MatLAB data acquisition toolbox. Steady-state operation was obtained at 10, 20 and 40 g/L of sucrose in the influent, but a subsequent step change to 50 g/L was unsustainable. The hydrogen content ranged between 50% and 60%. The yield of hydrogen decreased as the substrate concentration increased from 1.7 +/- 0.2 mol/mol hexose added at 10 g/L, to 0.8 +/- 0.1 mol/mol at 50 g/L. Sparging with nitrogen improved the hydrogen yield by at least 35% at 40 g/L and at least 33% at 50 g/L sucrose. Sparging also enabled steady-state operation at 50 g/L sucrose. Addition of an extra 4 g/L of n-butyric acid to the reactor operating at 40 g/L sucrose increased the butyrate concentration from 9,830 to 18,900 mg/L, immediately stopping gas production and initiating the production of propionate, whilst the addition of 2 g/L taking the butyrate concentration to 12,200 mg/L did not do so. It was shown that operation at 50 g/L sucrose in a CSTR in butyrate fermentation is possible.  相似文献   

18.
Summary The effects of pH, temperature and substrate concentration on the cellulase (B-1,4-endoglucanase) activity ofA. candidus were studied. Maximum enzyme activities were obtained when the concentration of the substrate (CMC) was 6 mg per ml, at pH 4, and temperature 50 C. The enzyme retained 85% of its original activity under optimal conditions of pH and temperature after 36 hours of incubation. The Km constant of the reaction was calculated as 2.3 mg of CMC per ml and the energy of activation of the enzyme as 7.92 k cal per mole.  相似文献   

19.
In this paper, we show the substrate 4-(trimethylsilyl)-3-butyn-2-one is unstable, and can be easily cleaved into a carbonyl alkyne and trimethylhydroxysilane in aqueous buffer with pH above 6.0. However, this problem could be effectively solved by lowering the buffer pH. Meanwhile, the efficient synthesis of enantiopure (S)-4-(trimethylsilyl)-3-butyn-2-ol, a key intermediate for preparing a 5-lipoxygenase inhibitor, has been successfully conducted through the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one with immobilized Candida parapsilosis CCTCC M203011 cells. For optimization of the reaction, various influential variables, such as buffer pH, co-substrate concentration, reaction temperature and substrate concentration, were systematically examined. All the factors mentioned above had effect on the reaction to some extent. The optimal buffer pH, co-substrate concentration, reaction temperature and substrate concentration were 5.0, 65.3 mM, 30 °C and 3.0 mM, respectively, under which the maximum yield and product e.e. were as high as 81.3% and >99.9% after a reaction time of 1 h, which are much higher than the corresponding values previously reported.  相似文献   

20.
研究了固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原反应,系统探讨了振荡速度、底物浓度、固定化细胞浓度、pH值和反应温度对反应速度、产率和产物光学纯度的影响。结果表明,上述因素对固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原反应均有较显著的影响。振荡速度以150r/min为宜,底物浓度和固定化细胞浓度分别为14mmol/L和0.15g/mL较佳,适宜的pH值为7.3,最佳反应温度为25℃~30℃。在该优化反应条件下,反应最大产率和产物的光学纯度分别高达84.9%和90.2%ee。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号