首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apreviously-unknownviruswasfoundchroni-callyinfectingC6/36cellsthatwereusedtoculturedenguevirus.Afterisolationandpurification,RT,PCRandsequencingwereperformedwithrandomprimers.TheresultsshowthattheviralgenomeisssDNAandis4096ntinlength(GenBankAccessionNo.AY095351).Thenucleicacidsequenceofthispreviously-undescribedvirussharesabout90%iden-titywiththatofAedesaegyptidensonucleosisvirusandtheaminoacidsequencesofthreeproteinsen-codedbythenucleicacidshareabout89%—93%identitieswiththoseofAedesa…  相似文献   

2.
The three-dimensional structure of capsid ofAedes albopictus C6/36 densovirus was determined to 14-Å resolution by electron cryomicroscopy and computer reconstruction. The triangulation number of the capsid is 1. There are 12 holes in each triangular face and a spike on each 5-fold vertex. The validity of the capsid and nucleic acid densities in the reconstructions was discussed.  相似文献   

3.
The minute virus of mice (MVM) provides a simple model for the dissection of the molecular determinants of the self-assembly, stability, and dynamics of a biological supramolecular complex. MVM assembly involves the trimerization of capsid subunits in the cytoplasm; trimers are transported to the nucleus, where they suffer a conformational change and are made competent for capsid formation. Our previous study revealed that capsid assembly from trimers is dependent on stronger intertrimer interactions that are equally spaced in an equatorial belt surrounding each trimer. We have now targeted the interfaces between monomers within each trimer to identify the molecular determinants of trimerization and the rearrangement needed for capsid assembly. Twenty-eight amino acid residues per monomer were individually mutated to alanine to remove most of the stronger intersubunit interactions. The effects on trimer and capsid assembly and virus infectivity in cells were analyzed. No side chain was individually required for trimer assembly in the cytoplasm; in contrast, half of them were required to make the trimers competent for nuclear capsid assembly, even though none was close to intertrimer interfaces. These critical side chains are conserved and participate in extensive hydrophobic contacts, buried hydrogen bonds, or salt bridges between subunits. This study on MVM capsid assembly reveals that: (i) trimerization is a robust process, insensitive to removal of individual intersubunit interactions; and (ii) the rearrangement of the trimer intermediate required for capsid assembly is a global process that depends on the establishment of many interactions along the protein-protein interfaces within each trimer.  相似文献   

4.
Gene Order of the Poliovirus Capsid Proteins   总被引:17,自引:14,他引:3       下载免费PDF全文
Two methods were used to determine the genetic map of the poliovirus capsid proteins. The first method uses pactamycin, a drug which selectively inhibits the initiation of protein synthesis and causes a change in the relative amounts of capsid proteins synthesized. This differential effect on each of the capsid proteins is interpreted as indicating the relative distance of each protein from the initiation site of protein synthesis. The second method involves an analysis of coat precursor molecules released from polyribosomes after a series of short pulses of different length terminated by addition of emetine, a drug which stops all protein synthesis almost immediately after its addition. As the pulse length is increased, each of the capsid proteins within the precursor gains radioactivity with different kinetics. From these kinetics, it is possible to determine the gene order of the capsid proteins within the precursor as well as a rate of protein synthesis. Both methods indicate a gene order for the region of the ribonucleic acid coding for the capsid proteins as (5' --> 3') VP 4 - VP 2 - VP 3 - VP 1.  相似文献   

5.
Ceres P  Zlotnick A 《Biochemistry》2002,41(39):11525-11531
Hepatitis B virus (HBV) is an enveloped DNA virus with a spherical capsid (or core). The capsid is constructed from 120 copies of the homodimeric capsid protein arranged with T = 4 icosahedral symmetry. We examined in vitro assembly of purified E. coli expressed HBV capsid protein. After equilibration, concentrations of capsid and dimer were evaluated by size exclusion chromatography. The extent of assembly increased as temperature and ionic strength increased. The concentration dependence of capsid assembly conformed to the equilibrium expression: K(capsid) = [capsid]/[dimer](120). Given the known geometry for HBV capsids and dimers, the per capsid assembly energy was partitioned into energy per subunit-subunit contact. We were able to make three major conclusions. (i) Weak interactions (from -2.9 kcal/mol at 21 degrees C in low salt to -4.4 kcal/mol at 37 degrees C in high salt) at each intersubunit contact result in a globally stable capsid; weak intersubunit interactions may be the basis for the phenomenon of capsid breathing. (ii) HBV assembly is characterized by positive enthalpy and entropy. The reaction is entropy-driven, consistent with the largely hydrophobic contacts found in the crystal structure. (iii) Increasing NaCl concentration increases the magnitude of free energy, enthalpy, and entropy, as if ionic strength were increasing the amount of hydrophobic surface buried by assembly. This last point leads us to suggest that salt acts by inducing a conformational change in the dimer from an assembly-inactive form to an assembly-active form. This model of conformational change linked to assembly is consistent with immunological differences between dimer and capsid.  相似文献   

6.
UL25 is one of seven herpes simplex virus-encoded proteins involved specifically in DNA encapsidation. Its role appears to be to stabilize the capsid so that DNA is prevented from escaping once it has entered. To clarify the function of UL25, we have examined capsids with the goal of defining where it is located. Analysis of trypsin-treated capsids showed that UL25 is sensitive to cleavage like other proteins such as the major capsid and portal proteins that are exposed on the capsid surface. Internal proteins such as the scaffolding protein and protease were not affected under the same experimental conditions. Capsids were also examined by electron microscopy after staining with gold-labeled antibody specific for UL25. Images of stained capsids demonstrated that most labeled sites (71% in C capsids) were at capsid vertices, and most stained C capsids had label at more than one vertex. A quantitative immunoblotting method showed that the capsid contents of UL25 were 56, 20, and 75 copies per capsid in A, B, and C capsids, respectively. Finally, soluble UL25 protein was found to bind in vitro to purified capsids lacking it. The amount of bound UL25 corresponded to the amount present in B capsids, and bound UL25 was found by immunoelectron microscopy to be located predominantly at the capsid vertices. The results are interpreted to suggest that five UL25 molecules are found at or near each of the capsid vertices, where they are exposed on the capsid surface. Exposure on the surface is consistent with the view that UL25 is added to the capsid as DNA is packaged or during late stages of the packaging process.  相似文献   

7.
I Singh  A Helenius 《Journal of virology》1992,66(12):7049-7058
The mechanism by which Semliki Forest virus nucleocapsids are uncoated was analyzed in living cells and in vitro. In BHK-21 cells, uncoating occurred with virtually complete efficiency within 1 to 2 min after the nucleocapsids entered the cytoplasm. It was inhibited by monensin, which blocks nucleocapsid penetration from endosomes. As previously shown for Sindbis virus (G. Wengler and G. Wengler, Virology 134:435-442, 1984), the capsid proteins from incoming nucleocapsids became associated with ribosomes. The ribosome-bound capsid proteins were distributed throughout the cytoplasm, while the viral RNA remained associated with vacuolar membranes. Using purified nucleocapsids and ribosomes in vitro, we established that ribosomes alone were sufficient for uncoating. Their role was to release the capsid proteins from nucleocapsids and irreversibly sequester them, in a process independent of energy and translation. The process was stoichiometric rather than catalytic, with a maximum of three to six capsid proteins bound to each ribosome. More than 80% of the capsid proteins could thus be removed from the viral RNA, resulting in the formation of nucleocapsid remnants whose sedimentation coefficients progressively decreased from 140S to 80S as uncoating proceeded.  相似文献   

8.
The structures of the hexavalent capsomers of herpes simplex virus type 2 were analyzed by negative staining electron microscopy of capsomer patches derived from partially disrupted nucleocapsids. Optimally computer-averaged images were formed for each of the three classes of capsomer distinguished by their respective positions on the surface of the icosahedral capsid with a triangulation number of 16; in projection, each capsomer exhibited unequivocal sixfold symmetry. According to correspondence analysis of our set of capsomer images, no significant structural differences were detected among the three classes of capsomers, as visualized under these conditions. Taking into account information from images of freeze-dried, platinum-shadowed nucleocapsid fragments, it was established that each hexavalent capsomer is a hexamer of the 155-kilodalton major capsid protein. The capsomer has the form of a sixfold hollow cone approximately 12 nm in diameter and approximately 15 nm in depth, whose axial channel tapers in width from the outside towards the inner capsid surface.  相似文献   

9.
M Yu  R H Miller  S Emerson    R H Purcell 《Journal of virology》1996,70(10):7085-7091
The capsid particle of hepadnaviruses is assembled from its dimer precursors. However, the mechanism of the protein-protein interaction is still poorly understood. A small region in the capsid protein of woodchuck hepatitis virus (WHV) contains four hydrophobic residues, including leucine 101, leucine 108, valine 115, and phenylalanine 122, that are conserved and spaced every seventh residue in the primary sequence to form a hydrophobic heptad repeat (hhr). A hydrophobic force often plays an important role in the interaction of proteins. Therefore, to investigate the role of this region in capsid assembly, we individually changed the codons specifying these four hydrophobic amino acids to codons specifying alanine or proline. In addition, we examined the in vivo infectivity of a WHV genome bearing a naturally occurring single amino acid change (histidine 104-->proline) in the hhr region. The phenotype of each altered genome was determined in both eukaryotic and prokaryotic systems by a capsid protein assay and electron microscopic examination. We show that replacement of any one of the four hydrophobic residues with alanine did not prevent capsid assembly. However, assembled capsid particles were not detected if combinations of any two of the four residues were substituted with alanines or if the spacing of these four hydrophobic residues was changed. An individual introduction of a proline (which dramatically changes the secondary structure of proteins) into different positions of this small region also abolished capsid assembly in vitro or viral replication in vivo. These results suggested that the hhr region of the core protein of WHV was critical for capsid assembly.  相似文献   

10.
The genome of a retrovirus is surrounded by a convex protein shell, or capsid, that helps facilitate infection. The major part of the capsid surface is formed by interlocking capsid protein (CA) hexamers. We report electron and X-ray crystallographic analysis of a variety of specimens assembled in vitro from Rous sarcoma virus (RSV) CA. These specimens all contain CA hexamers arranged in planar layers, modeling the authentic capsid surface. The specimens differ only in the number of layers incorporated and in the disposition of each layer with respect to its neighbor. The body of each hexamer, formed by the N-terminal domain of CA, is connected to neighboring hexamers through C-terminal domain dimerization. The resulting layer structure is very malleable due to inter-domain flexibility. A helix-capping hydrogen bond between the two domains of RSV CA creates a pivot point, which is central to controlling their relative movement. A similar mechanism for the governance of inter-domain motion was recently described for the human immunodeficiency virus type 1 (HIV-1) capsid, although there is negligible sequence identity between RSV and HIV-1 CA in the region of contact, and the amino acids involved in creating the pivot are not conserved. Our observations allow development of a physically realistic model for the way neighboring hexamers can tilt out of plane, deforming the hexamer layer and generating the continuously curved surfaces that are a feature of all retroviral capsids.  相似文献   

11.
A trans-encapsidation assay was established to study the specificity of picornavirus RNA encapsidation. A poliovirus replicon with the luciferase gene replacing the capsid protein-coding region was coexpressed in transfected HeLa cells with capsid proteins from homologous or heterologous virus. Successful trans-encapsidation resulted in assembly and production of virions whose replication, upon subsequent infection of HeLa cells, was accompanied by expression of luciferase activity. The amount of luciferase activity was proportional to the amount of trans-encapsidated virus produced from the cotransfection. When poliovirus capsid proteins were supplied in trans, >2 × 106 infectious particles/ml were produced. When coxsackievirus B3, human rhinovirus 14, mengovirus, or hepatitis A virus (HAV) capsid proteins were supplied in trans, all but HAV showed some encapsidation of the replicon. The overall encapsidation efficiency of the replicon RNA by heterologous capsid proteins was significantly lower than when poliovirus capsid was used. trans-encapsidated particles could be completely neutralized with specific antisera against each of the donor virus capsids. The results indicate that encapsidation is regulated by specific viral nucleic acid and protein sequences.  相似文献   

12.
The capsids of spherical viruses may contain from tens to hundreds of copies of the capsid protein(s). Despite their complexity, these particles assemble rapidly and with high fidelity. Subunit and capsid represent unique end states. However, the number of intermediate states in these reactions can be enormous-a situation analogous to the protein folding problem. Approaches to accurately model capsid assembly are still in their infancy. In this paper, we describe a sail-shaped reaction landscape, defined by the number of subunits in each species, the predicted prevalence of each species, and species stability. Prevalence can be calculated from the probability of synthesis of a given intermediate and correlates well with the appearance of intermediates in kinetics simulations. In these landscapes, we find that only those intermediates along the leading edge make a significant contribution to assembly. Although the total number of intermediates grows exponentially with capsid size, the number of leading-edge intermediates grows at a much slower rate. This result suggests that only a minute fraction of intermediates needs to be considered when describing capsid assembly.  相似文献   

13.
Of the six herpesvirus capsid proteins, the smallest capsid proteins (SCPs) share the least sequence homology among herpesvirus family members and have been implicated in virus specificity during infection. The herpes simplex virus-1 (HSV-1) SCP was shown to be horn shaped and to specifically bind the upper domain of each major capsid protein in hexons but not in pentons. In Kaposi's sarcoma-associated herpesvirus (KSHV), the protein encoded by the ORF65 gene (pORF65) is the putative SCP but its location remains controversial due to the absence of such horn-shaped densities from both the pentons and hexons of the KSHV capsid reconstructions. To directly locate the KSHV SCP, we have used electron cryomicroscopy and three-dimensional reconstruction techniques to compare the three-dimensional structure of KSHV capsids to that of anti-pORF65 antibody-labeled capsids. Our difference map shows prominent antibody densities bound to the tips of the hexons but not to pentons, indicating that KSHV SCP is attached to the upper domain of the major capsid protein in hexons but not to that in pentons, similar to HSV-1 SCP. The lack of horn-shaped densities on the hexons indicates that KSHV SCP exhibits structural features that are substantially different from those of HSV-1 SCP. The location of SCP at the outermost regions of the capsid suggests a possible role in mediating capsid interactions with the tegument and cytoskeletal proteins during infection.  相似文献   

14.
A nucleic acid-bound capsid protein dimer was previously identified using a Sindbis virus in vitro nucleocapsid assembly system and cross-linking reagents. Cross-link mapping, in combination with a model of the nucleocapsid core, suggested that this dimer contained one monomer from each of two adjacent capsomeres. This intercapsomere dimer is believed to be the initial intermediate in the nucleocapsid core assembly mechanism. This paper presents the purification of cross-linked dimers of a truncated capsid protein and the partial purification of cross-linked dimers of a full-length assembly-defective mutant. The assembly of core-like particles from these cross-linked capsid protein dimers is demonstrated. Core-like particles generated from cross-linked full-length mutant CP(19-264)L52D were examined by electron microscopy and appeared to have a morphology similar to that of wild-type in vitro-assembled core-like particles, although a slight size difference was often visible. Truncated cross-linked CP(81-264) dimers generated core-like particles as well. These core-like particles could subsequently be disassembled when reversible cross-linking reagents were used to form the dimers. The ability of the covalent intercapsomere cross-link to rescue capsid proteins with assembly defects or truncations in the amino-terminal region of the capsid protein supports the previous model of assembly and suggests a possible role for the amino-terminal region of the protein.  相似文献   

15.
Capsids of herpes simplex virus (HSV) types 1 and 2 contain seven polypeptides ranging in molecular weight from 154,000 to 12,000 (termed NC-1 through NC-7 in order of descending molecular weight). Antibodies prepared to HSV-1 capsid polypeptides isolated from sodium dodecyl sulfate-polyacrylamide gels reacted in an immunofluorescence assay against HSV-1-infected KB cells. Three of the antibodies (anti-NC-1, anti-NC-2, and anti-NC-3,4) also reacted with HSV-2-infected cells. Tryptic peptide analysis showed that each of the HSV-1 capsid polypeptides had a unique methionine peptide profile, and none appeared to be derived from the major capsid polypeptide. Comparative peptide analysis of HSV-1 and HSV-2 showed that one polypeptide (NC-7, 12,000 molecular weight) had an identical methionine peptide profile and a very similar arginine peptide profile in both virus types. The arginine peptide profile of NC-7 of HSV-1 was very different from the arginine profile of KB histone H4. Although there were certain intertypic similarities in the methionine peptide profiles of the other capsid components especially in NC-1 (the major capsid protein), there was no case where the tryptic peptides were identical in the two virus types.  相似文献   

16.
Evolutionary relationships between viruses may be obscure by protein sequence but unmasked by structure. Analysis of bacteriophage T5 by cryo-electron microscopy and protein sequence analysis reveals analogies with HK97 and T4 that suggest a mosaic of such connections. The T5 capsid is consistent with the HK97 capsid protein fold but has a different geometry, incorporating three additional hexamers on each icosahedral facet. Similarly to HK97, the T5 major capsid protein has an N-terminal extension, or Delta-domain that is missing in the mature capsid, and by analogy with HK97, may function as an assembly or scaffold domain. This Delta-domain is predicted to be largely coiled-coil, as for that of HK97, but is approximately 70% longer correlating with the larger capsid. Thus, capsid architecture appears likely to be specified by the Delta-domain. Unlike HK97, the T5 capsid binds a decoration protein in the center of each hexamer similarly to the "hoc" protein of phage T4, suggesting a common role for these molecules. The tail-tube has unusual trimeric symmetry that may aid in the unique two-stage DNA-ejection process, and joins the tail-tip at a disk where tail fibers attach. This intriguing mix of characteristics embodied by phage T5 offers insights into virus assembly, subunit function, and the evolutionary connections between related viruses.  相似文献   

17.
Meckes DG  Wills JW 《Journal of virology》2007,81(23):13028-13036
The UL16 tegument protein of herpes simplex virus is conserved throughout the herpesvirus family. It has been reported to be capsid associated and may be involved in budding by providing an interaction with the membrane-bound UL11 protein. UL16 has been shown to be present in all the major locations that capsids are found (i.e., the nucleus, cytoplasm, and virions), but whether it is actually capsid associated in each of these has not been reported. Therefore, capsids were purified from each compartment, and it was found that UL16 was present on cytoplasmic but not nuclear capsids. In extracellular virions, the majority of UL16 (87%) was once again not capsid associated, which suggests that the interaction is transient during egress. Because herpes simplex virus (HSV) buds into the acidic compartment of the trans-Golgi network (TGN), the effect of pH on the interaction was examined. The amount of capsid-associated UL16 dramatically increased when extracellular virions were exposed to mildly acidic medium (pH 5.0 to 5.5), and this association was fully reversible. After budding into the TGN, capsid and tegument proteins also encounter an oxidizing environment, which is conducive to disulfide bond formation. UL16 contains 20 cysteines, including five that are conserved within a putative zinc finger. Any free cysteines that are involved in the capsid interaction or release mechanism of UL16 would be expected to be modified by N-ethylmaleimide, and, consistent with this, the amount of capsid-associated UL16 dramatically increased when virions were incubated with this compound. Taken together, these data suggest a transient interaction between UL16 and capsids, possibly modified in the acidic compartment of secretory vesicles and requiring a release mechanism that involves cysteines.  相似文献   

18.
We report a study of the in vitro self-assembly of virus-like particles formed by the capsid protein of cowpea chlorotic mottle virus and the anionic polymer poly(styrene sulfonate) (PSS) for five molecular masses ranging from 400 kDa to 3.4 MDa. The goal is to explore the effect on capsid size of the competition between the preferred curvature of the protein and the molecular mass of the packaged cargo. The capsid size distribution for each polymer was unimodal, but two distinct sizes were observed: 22 nm for the lower molecular masses, jumping to 27 nm at a molecular mass of 2 MDa. A model is provided for the formation of the virus-like particles that accounts for both the PSS and capsid protein self-interactions and the interactions between the protein and PSS. Our study suggests that the size of the encapsidated polymer cargo is the deciding factor for the selection of one distinct capsid size from several possible sizes with the same inherent symmetry.  相似文献   

19.
Canine parvovirus type 2 (CPV-2) emerged in 1978 and spread worldwide within 2 years. Subsequently, CPV-2 was completely replaced by the variant CPV-2a, which is characterized by four specific capsid (VP2) mutations. The X-ray crystal structure of the CPV-2a capsid shows that each mutation confers small local changes. The loss of a hydrogen bond and introduction of a glycine residue likely introduce flexibility to sites that control interactions with the host receptor, antibodies, and sialic acids.  相似文献   

20.
The capsid proteins of adeno-associated viruses (AAV) have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s) of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号