首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of Lan Bo Chen’s group using a mitochondria-selective fluorochrome 5,5’,6,6’- tetrachloro- 1,1’,3,3’- tetraethylbenzimidazolocarbocyanine iodide (JC-1) indicate that mitochondria in situ may have zones of different electrochemical potential along their length. This was indicated by the formation of J-aggregates of this dye at distinct sites along a single mitochondrion. Also, intensity variations along single mitochondria were found with diamino-styryl-pyridinium methiodide (DASPMI), another fluorochrome that selectively stains mitochondria depending on their electrochemical potential. DASPMI exchanges easily with the cytoplasm and changes its quantum yield when bound to mitochondrial membranes. Therefore, fluorescence intensity is primarily controlled by the membrane environment rather than by mass accumulation. Two possible explanations of intramitochondrial fluorescence intensity variations have to be discussed: variations in the amount of mitochondrial inner membrane per unit of projection area (or voxel), and differences in the electrochemical gradient. This problem has been approached by comparing fluoro-micrographs of mitochondria in endothelial cells stained with either JC-1 or DASPMI with electron micrographs of the same mitochondria after fixation with glutardialdehyde and osmium tetroxide and ultrathin sectioning. JC-1 red fluorescence (revealing J-aggregate formation) as well as high-intensity staining with DASPMI correlate roughly with the local thickness of mitochondria; no differences in the crista organization are revealed for those areas or mitochondria exhibiting red JC-1 fluorescence and those with green fluorescence. The distance between red fluorescing areas in a single mitochondrion seem to be caused by competition for dye molecules placed in between centres of JC-1 aggregation. Isolated mitochondria are of uniform small size and spherical shape; therefore, no differences in shape interfere with JC-1 staining. Thus JC-1 may be an appropriate indicator of membrane potential in isolated mitochondria. In living cells mitochondria often are large and elongated, and thus the situation is not straightforward to interpret. However, evidence is provided that there are submitochondrial zones, which differ in membrane potential from one adjacent area to another, because DASPMI staining of intramitochondrial zones reveals differences in fluorescence intensity and preferred photodamage of these areas. In some cases separation of the zones of higher membrane potential by cristae traversing the whole diameter of a mitochondrion has been observed. Local photobleaching of stained mitochondria results in a loss of fluorescence along the total length of a mitochondrion. However, this type of bleaching develops over tens of seconds, not in the very short time range (e.g. ms) expected from the discharge of all the membranes if they were electrically coupled.  相似文献   

2.
以地塞米松(DEX)诱导小鼠胸腺细胞凋亡;利用PI和AnneXin V/PI流式细胞术分别检测细胞晚期和早期凋亡;利用JC-1和DiOC_6(3)/PI在细胞水平检测凋亡中线粒体膜电势(△ψm)变化:抽提线粒体,利用JC-1直接染色技术检测现存线粒体△ψm情况。实验结果显示,DEX显著诱导胸腺细胞早期和晚期凋亡,凋亡细胞主要来自G_0/G_1期;细胞水平可见DEX介导与△ψm相关的J-aggregate和DiOC_6(3)可染性降低,同时介导线粒体数量显著降低,6h细胞膜完整性无显著变化:单纯线粒体检测结果显示,多数线粒体维持正常△ψm。提示,DEX介导胸腺细胞凋亡中线粒体数量降低,现存线粒体多保持着正常△ψm以维持凋亡过程细胞能量供给。  相似文献   

3.
研究固气界面上花菁染料J-聚集体的光学性质、形貌特点和形成机制。以花菁染料为研究对象,在云母基底表面制备花菁染料的超分子J-聚集体,根据J-聚集体独特的光学性能,通过紫外吸收光谱,荧光光谱,荧光显微镜等对云母界面上的花菁染料聚集体进行光谱测量和形貌表征。结果表明:云母/空气界面上的花菁染料聚集体在580nm处出现相对于染料单体红移且狭窄的强吸收峰,而在583nm处出现一个伴随微弱Stokes位移的荧光峰,这些结果符合吸附在基质上的J-聚集体的光学特征,同时荧光显微镜观察表明云母基底上分散分布着2~4μm微晶棒状的聚集体。结果证明:花菁染料能够在云母/空气界面生成超分子J-聚集体,其形成机制是通过带正电荷的花菁染料分子与云母基底表面带负电荷的空穴通过外延相互作用形成的。  相似文献   

4.
Assessment of equine sperm mitochondrial function using JC-1   总被引:9,自引:0,他引:9  
The fluorescent carbocyanine dye, JC-1, labels mitochondria with high membrane potential orange and mitochondria with low membrane potential green. Evaluation of mitochondrial membrane potential with JC-1 has been used in a variety of cell types, including bull spermatozoa; however, JC-1 staining has not yet been reported for equine spermatozoa. The aim of this study was to apply JC-1 staining and assessment by flow cytometry or a fluorescence microplate reader for evaluation of mitochondrial function of equine spermatozoa. Six ejaculates from four stallions were collected and centrifuged through a Percoll gradient (PERC). Spermatozoa were resuspended to 25 x 10(6) cells/mL, samples were split, and one sample was repeatedly flash frozen (FF) in LN2 and thawed. The following gradients of PERC:FF were prepared: 100:0 (100), 75:25(75), 50:50 (50), 25:75 (25) and 0:100 (0). Samples were stained with 2.0 microM JC-1 and assessed for staining by flow cytometry and by a fluorescence microplate reader. A total of 10,000 gated events was analyzed per sample with flow cytometry. The mean percentage of cells staining orange for the 100, 75, 50, 25 and 0 treatments was 92.5, 72.8, 53.4, 27.3 and 7.3, respectively. The expected percentage of spermatozoa forming JC-1 aggregates was correlated with the actual percentage of orange labeled sperm cells determined by flow cytometry (r2=0.98). Conversely, JC-1 monomer formation was negatively correlated with expected mitochondrial membrane potential (r2=-0.98). The blank corrected orange fluorescence, assessed by microplate assay, was significantly (P<0.0001) correlated with the expected (r2=0.49) and with the flow cytometric (r2=0.50) determination of percentage of spermatozoa with mitochondria of high membrane potential. Total orange and orange:green fluorescence was also correlated with mitochondrial function. These results indicate that JC-1 staining can accurately detect changes in mitochondrial membrane potential of equine spermatozoa. The relative fluorescence of JC-1 labeling patterns of equine spermatozoa can be accurately and objectively determined by flow cytometry and by a fluorescence microplate reader assay.  相似文献   

5.
This study assessed mitochondrial membrane potential changes in cultured osteoblasts treated with hormones known to regulate osteoblasts. A fluorescent carbocyanine dye, 5,5′, 6,6′-tetrachloro-1,1′, 3,3′-tetraethylbenzimidazolocarbocyanine iodide, also called JC-1, was used as a probe. JC-1 emits photons at 585 nm (orange–red) when the membrane potential in mitochondria is highly negative, but when the potential becomes reduced emission occurs at 527 nm (green). Osteoblasts were rinsed in serum-free medium for 5 min, then loaded with 1 × 10−6MJC-1 for 10 min. The distribution and intensity of JC-1 fluorescence were evaluated with a laser-scanning confocal microscope system. Hormone treatments included parathyroid hormone (PTH; 10−8M), 17β-estradiol (10−8M), and thyroxine (T4; 10−8M). The potassium ionophore valinomycin (10−6M) was used as a control since it is known to disrupt the electrochemical gradient of mitochondria without interfering with the pH gradient. Valinomycin caused a profound, rapid increase (22.5% above untreated values) in the green/red ratio, which indicated a lowering of the mitochondrial membrane potential in all samples evaluated. PTH caused a less pronounced, but significant (7–14%), reduction in membrane potential in all cells examined. PTH is known to affect osteoblasts in a number of ways and is inhibitory to mitochondrial respiration; the results confirm this effect. For estradiol, half of the cells responded at a significant level, with a membrane potential reduction of 6 to 13% being recorded; the other half did not respond. Thyroxine did not alter mitochondrial membrane potential. Responses were detectable within 20 s for valinomycin, but occurred at a slower rate, over 200 to 300 s, following PTH and estradiol treatment. Responses to PTH and estradiol could be due to mitochondrial uptake of cytosolic Ca2+.  相似文献   

6.
Free base porphyrin (PPhe), derivatized with aminosulfonyl groups linked to the aromatic amino acid phenylalanine at the meso-positions, was mixed with DMPC vesicles. The resulting interaction was studied by absorption, steady-state and transient state fluorescence, at different pHs. At pH=2 to pH=9, the aforementioned porphyrin predominates as an aggregated species, with a co-facial arrangement of the molecules taking into account the blue shift of the Soret band (414 nm for the monomer and 401 nm for the aggregate). Upon interaction with DMPC vesicles, the competing hydrophobic interactions with the bilayer destabilize the aggregated species in favor of monomer incorporation. Fluorescence lifetimes also show that the long component assigned to the monomer contributes only 30% to the overall decay in solution (e.g. pH=7.0) whereas in DMPC vesicles this contribution increases up to 85% independent of the solution pH, which confirms a location of the probe in an environment "protected" from free water. The picture changes completely in the case of TSPP, an anionic porphyrin which does not incorporate in DMPC vesicles. Remarkably, at pH=2.5 all the experimental findings point to the self-assembling of the porphyrin units in J-aggregates induced at the surface of the DMPC vesicle. In fact, upon removal of the aqueous solvent, we could define by fluorescence lifetime imaging microscopy (FLIM) regions where the fluorescence lifetime is that characteristic of the J-aggregate ( 0.11 ns).  相似文献   

7.
Uri Pick  Mordhay Avron 《BBA》1976,440(1):189-204
The fluorescent dye 3,3-dipentyloxacarbocyanine (OCC) can be used as a fluorescence probe to measure transmembrane potentials across Rhodospirillum ruburm chromatophore membranes. A reversible fluorescence increase is observed in the light which is sensitive to inhibitors, permeable ions and uncouplers.Partial interchangeability between the electrical potential and the proton concentration gradient has been demonstrated by measurement of the fluorescence increase with OCC and the fluorescence quenching with 9-aminoacridine.OCC fluorescence changes can be induced also in the dark by injection of permeable salts and by rapid pH changes presumably indicating diffusion potentials. Using salt-induced diffusion potentials for calibrating the light signals and with several assumptions, the light-induced potentials were estimated as 170 mV for the maximal signal and 90–110 mV at the steady state.OCC has been shown to apparently increase the electrical conductivity of the chromatophore membrane, a fact which may be relevant to the mechanism of action of this probe.A red shift in the OCC absorption spectrum occurs when mixed with chromatophores, with a difference spectrum maximum at 495 nm. The absorption changes at 495 nm taking place in the light are similar in kinetics to the fluorescence changes. The absorbance spectrum of OCC in organic solvents is red shifted and the extent of the shift depends on the hydrophobicity of the medium. The difference spectrum compared to water in sec-butyl acetaten-hexane (3 : 1, v/v) with a dipole moment of 5 was nearly identical to that of chromatophore-associated dye.The uncoupling properties of OCC at high concentrations and some difficulties in calibration limit the usefulness of this probe for quantitative measurements of transmembrane potentials.  相似文献   

8.
Bernas T  Dobrucki J 《Cytometry》2002,47(4):236-242
BACKGROUND: Bioreduction of water-soluble tetrazolium salts (e.g., MTS, XTT, and MTT) to their respective formazans is generally regarded as an indicator of cell "redox activity." The reaction is attributed mainly to mitochondrial enzymes and electron carriers. However, MTT reduction may also be catalyzed by a number of other nonmitochondrial enzymes. The goal of this work was to establish the sites of MTT reduction in intact HepG2 human hepatoma cells in culture. METHODS: In order to establish the subcellular localization of the sites of reduction of MTT, we imaged the formation of MTT-formazan deposits using backscattered light confocal microscopy. Mitochondria were visualized in viable cells using fluorescent dyes that bind in a manner dependent (JC-1 and TMRE) or independent (NAO) of mitochondrial electric potential. RESULTS: Only 25-45% of MTT-formazan was associated with mitochondria after 25 min of incubation. No more than 25% of the mitochondrial area on images was occupied by MTT-formazan. Mitochondrial fluorescence of TMRE, NAO, and the monomeric form of JC-1 decreased rapidly in cells incubated with MTT. However, the intensity of fluorescence of JC-1 aggregates dropped by less than 30% at the onset of incubation and remained constant as reduction of MTT proceeded further. CONCLUSIONS: (1) Most of MTT-formazan deposits are not coincident with mitochondria. (2) Monomeric JC-1, as well as TMRE and NAO, accumulating in mitochondria may be displaced by MTT. Thus, the presence of positively charged organic compounds (like MTT) may distort measurements of mitochondrial transmembrane electric potential, which are based on accumulation of fluorescent dyes.  相似文献   

9.
The influence of bovine serum albumin (BSA) on the formation of J-aggregates of meso-tetra(4-sulfonatophenyl)porphine (TPPS4) in aqueous acid solution (pH 1.3) has been investigated by means of absorption and fluorescence spectroscopy. TPPS4 concentration was kept constant at 2 microM while BSA concentration was varied to get TPPS4 : BSA molar ratios from 1 : 0.005 to 1 : 20. In the presence of protein at all used concentrations the intensity of J-aggregates absorption band was higher than that in the pure solution. Spectral changes indicated that the dynamic equilibrium of the aggregated TPPS4 species was highly dependent on the molar ratio between TPPS4 and BSA. Small relative concentrations of BSA (TPPS4 : BSA, 1 : 0.005-1 : 0.1) had a stimulating effect on formation of J-aggregates. Several fractions of J-aggregates located in protein and aqueous moieties were detected in mixed solutions at intermediate BSA concentrations (TPPS4 : BSA, 1 : 0.5-1 : 8), when the absorbance intensity of the J-aggregates was the highest. At the highest used BSA concentrations (TPPS4 : BSA, 1 : 10-1 : 20) the spectral properties of the remaining J-aggregates were similar to those typical for pure porphyrin solution. Additionally, the split of the Soret band into two with peaks at 440 nm and 423 nm was followed by the simultaneous appearance of Q bands and reflected the formation of TPPS4-BSA complexes including both protonated and deprotonated TPPS4 forms.  相似文献   

10.
Earlier reports that generation of reactive oxygen species (ROS) by isolated mitochondria supported by succinate was sensitive to small changes in the mitochondrial membrane potential (DeltaPsim) served as a basis for the concept of 'mild uncoupling' suggesting that a few millivolts decrease in DeltaPsim would be beneficial in neuroprotection because of reducing the production of ROS by mitochondria. In this study, we tested whether ROS generation by in situ mitochondria, which function in a normal cytosolic environment and oxidize glucose-derived physiological substrates, is also dependent on changes in DeltaPsim. The release of H(2)O(2) was measured by the Amplex red fluorescence assay in freshly prepared isolated nerve terminals, synaptosomes incubated in a glucose-containing medium. DeltaPsim was decreased by the uncoupler carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) (10-200 nmol/L), which accelerated the oxygen consumption, decreased the NADH level and induced depolarization, as shown by the fluorescence indicator JC-1, in in situ mitochondria. These changes were detected at already the smallest FCCP concentration. H(2)O(2) generation, however, was found to be unaltered by FCCP at any of the applied concentration. Depolarization of mitochondria was also induced by veratridine (40 mumol/L), which enhances the cytosolic Na(+) concentration and imposes an ATP demand in synaptosomes. The accelerated oxygen consumption and the small depolarization of in situ mitochondria by veratridine were not paralleled by any significant alteration in the ROS generation. These findings indicate that a basal ROS generation by in situ mitochondria is not sensitive to changes in DeltaPsim challenging the rational of the 'mild uncoupling' theory for neuroprotection and suggest that the DeltaPsim-dependent characteristics of ROS generation is limited mainly to well-coupled succinate-supported isolated mitochondria.  相似文献   

11.
In this study, we report for the first time concurrent measurements of membrane potential and dynamics and respiratory chain activities in rat heart mitochondria, as well as calcium transients in the hearts of rats in an early phase of streptozotocin diabetes, not yet accompanied with diabetes-induced complications. Quantitative relationships among these variables were assessed. The mitochondria from diabetic rats exhibited decreased fluorescence anisotropy values of diphenylhexatriene. This indicates that hydrophobic core of the membranes was more fluid compared with controls (p<0.05). We discuss the changes in fluidity as having been associated with augmented energy transduction through the diabetic membranes. Reduced ratio of JC-1 fluorescence (aggregates to monomers) in the mitochondria from diabetic hearts reflected descendent transmembrane potential. A significant negative association between membrane fluidity and potential in the diabetic group was found (p<0.05; r=0.67). Further, we observed an increase in calcium transient amplitude (CTA) in the diabetic cardiomyocytes (p=0.048). We conclude that some of the calcium-induced regulatory events that dictate fuel selection and capacity for ATP production in diabetic heart occur at the membrane level. Our findings offer new insight into acute diabetes-induced changes in cardiac mitochondria.  相似文献   

12.
The membrane potentials, rates of NAD(P)H formation, and rates of flavoprotein reduction have been measured for single mitochondria isolated from porcine hearts. These metabolic responses were elicited by the addition of malate and measured using fluorescence microscopy. For the measurements of mitochondrial membrane potential, mitochondria were stained with tetramethylrhodamine ethyl ester, and the membrane potentials of single mitochondria were determined. Individual mitochondria maintained the membrane potential at around -80 mV before addition of malate. Upon the addition of malate, each mitochondrion was rapidly polarized to around -100 approximately -140 mV and underwent repeated cycles of polarization and depolarization, which were probably caused by openings and closings of permeability transition pores. NAD(P)(+) and flavoprotein were reduced immediately after addition of malate and then slowly became reoxidized. Thus, single mitochondria can undergo rapid and repetitive changes in membrane potential, but not in the redox state of NAD(P)H and flavoprotein.  相似文献   

13.
Isolated heart mitochondria hydrolyze the acetoxymethyl esters of the Ca2+-sensitive fluorescent probe fura-2 and the pH-sensitive 2',7'-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF). The resulting charged forms of the probes are retained in the mitochondrial matrix and appear well-suited for the estimation of pCa and pH in this compartment. The mitochondria esterase activity is stimulated by Ca2+, inhibited by butacaine and quinine, and shows an alkaline pH optimum. The esterase has a similar affinity for the two probes (Km about 1.5 microM) and a somewhat higher Vmax for BCECF. Intramitochondrial pH can be determined by recording the ratio of the fluorescence of matrix BCECF at its excitation maximum of 509 nm to that at 450 nm, an excitation wavelength that is unresponsive to pH. A calibration plot relating the fluorescence ratio to pH is constructed using detergent-lysed mitochondria and the excitation maximum of 500 nm for BCECF in aqueous solution. Estimates of matrix pH by BCECF fluorescence in its useful range (pH 6 to 8) agree well with values obtained using the distribution of 5,5-dimethyl-2,4-oxazolidenedione. In protocols in which the fluorescence with excitation at 450 nm does not vary, a direct recording of BCECF fluorescence with excitation at 509 nm can be used to follow the kinetics of matrix pH changes.  相似文献   

14.
Actin plays a role in various processes in eukaryotic cells, including cell growth and death. We investigated whether the antitumor effect of trichostatin A (TSA) is associated with the dynamic rearrangement of F-actin. TSA is an antitumor drug that induces hyper-acetylation of histones by inhibiting histone deacetylase. HeLa human cervical cancer cells were used to measure the antitumor effect of TSA. The percent cell survival was determined by an MTT assay. Hypodiploid cell formation was assessed by flow cytometry. Collapse of the mitochondrial membrane potential (MMP) was identified by a decrease in the percentage of cells with red MitoProbe J-aggregate (JC-1) fluorescence. Cell survival was reduced by treatment with TSA, as judged by an MTT assay and staining with propidium iodide, FITC-labeled annexin V, or 4′,6-diamidino-2-phenylindole (DAPI). TSA also induced an MMP collapse, as judged by the measurement of intracellular red JC-1 fluorescence. In addition, the F-actin depolymerizers cytochalasin D (CytoD) and latrunculin B (LatB) induced an MMP collapse and increased apoptotic cell death in HeLa cells. However, our data show that apoptotic cell death and the MMP collapse induced by TSA were decreased by the co-treatment of cells with CytoD and LatB. These findings demonstrate that the dynamic rearrangement of F-actin might be necessary for TSA-induced HeLa cell apoptosis involving a TSA-induced MMP collapse. They also suggest that actin cytoskeleton dynamics play an important role in maintaining the therapeutic effects of antitumor agents in tumor cells. They further suggest that maintaining the MMP could be a novel strategy for increasing drug sensitivity in TSA-treated tumors.  相似文献   

15.
We have reinvestigated the hypothesis of the relative importance of glomus cell plasma and mitochondrial membrane potentials (E(m) and psi(m), respectively) in acute hypoxia by a noninvasive fluorescence microimaging technique using the voltage-sensitive dyes bis-oxonol and JC-1, respectively. Short-term (24 h)-cultured rat glomus cells and cultured PC-12 cells were used for the study. Glomus cell E(m) depolarization was indirectly confirmed by an increase in bis-oxonol (an anionic probe) fluorescence due to a graded increase in extracellular K(+). Fluorescence responses of glomus cell E(m) to acute hypoxia (approximately 10 Torr Po(2)) indicated depolarization in 20%, no response in 45%, and hyperpolarization in 35% of the cells tested, whereas all PC-12 cells consistently depolarized in response to hypoxia. Furthermore, glomus cell E(m) hyperpolarization was confirmed with high CO (approximately 500 Torr). Glomus cell psi(m) depolarization was indirectly assessed by a decrease in JC-1 (a cationic probe) fluorescence. Accordingly, 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (an uncoupler of oxidative phosphorylation), high CO (a metabolic inhibitor), and acute hypoxia (approximately 10 Torr Po(2)) consistently depolarized the mitochondria in all glomus cells tested. Likewise, all PC-12 cell mitochondria depolarized in response to FCCP and hypoxia. Thus, although bis-oxonol could not show glomus cell depolarization consistently, JC-1 monitored glomus cell mitochondrial depolarization as an inevitable phenomenon in hypoxia. Overall, these responses supported our "metabomembrane hypothesis" of chemoreception.  相似文献   

16.
Sperm competition occurs when the gametes of or more males compete for opportunities to fertilize a given set of ova. Previous studies have demonstrated that certain morphological characteristics are affected by sperm competition intensity (e.g. relative testes size and sperm midpiece volume). This study examined whether aspects of sperm energetics may also be affected by sexual selection. We compared the membrane potential of mitochondria in live sperm between H. sapiens (single partner mating system) and P. troglodytes (multiple partner mating system). Flow cytometry of sperm stained with the carbocyanine fluorescent dye JC-1 (an assay for mitochondrial membrane potential) revealed marked differences in red fluorescence intensity. P. troglodytes sperm showed significantly higher mitochondrial membrane potential. Mitochondria provide a substantial part of the energy required for sperm motility. A higher mitochondrial loading may therefore be associated with enhanced sperm motility and/or longevity. Additionally, examination of JC-1 red fluorescence levels before and after in vitro capacitation revealed further differences. Whereas chimpanzee sperm showed maintenance of membrane potential after capacitation (in some cases even an increase), sperm from humans consistently showed reduction in membrane potential. These results indicate that the sperm of human beings and chimpanzees exhibit marked differences in mitochondrial function, which are affected by selection pressures relating to sperm competition and that these pressures differ significantly between humans and chimpanzees.  相似文献   

17.
The mitochondrial probe 5,5′,6,6′‐tetrachloro‐1,1′,3,3′‐tetraethylbenzimidazolyl‐carbocyanine iodide (JC‐1) not only identifies mitochondria exhibiting low membrane potentials by the emission of green fluorescence (range, 510–520 nm) but also differentiates these from mitochondria exhibiting relatively high membrane potentials. This discrimination occurs because JC‐1 forms aggregates at high membrane potentials. These J‐aggregates emit a bright red‐orange fluorescence at 590 nm. In this study, JC‐1 was combined with the classical dead cell stain, propidium iodide (PI), to identify a spectrum of functional sperm along with degenerate sperm. Flow cytometric analysis of bull sperm showed that the aggregate:monomer ratio differed among bulls before cryopreservation (P < 0.001) but not afterwards (P > 0.05). The effects of stain equilibration time, sperm concentration, and live:dead ratios were examined. The addition of SYBR‐14 to the JC‐1 and PI combination enhanced the distinction between the red PI‐stained and red‐orange JC‐1–stained populations. This discrimination between J‐aggregates and the PI‐stained sperm was affected by sperm concentration. These studies show that JC‐1 can be useful in monitoring mitochondrial function in bovine sperm. Mol. Reprod. Dev. 53:222–229, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Studies were performed on ejaculated human spermatozoa (32 subjects with normal sperm motility and 25 subjects with low sperm motility). Morphology of sperm midpiece was evaluated in light, fluorescent and transmission or scanning electron microscope. Changes in mitochondrial membrane potential (delta(psi)m) and mass of mitochondria were analysed by flow cytometry using mitochondrial specific probes JC-1 and Mito Tracker Green FM. Moreover, oxidoreductive capability of sperm mitochondria was assessed using cytochemical reaction for NADH-dependent dehydrogenases. In flow cytometry analysis of JC-1-stained spermatozoa, two asthenozoospermic subpopulations were distinguished: patients with a high percentage (76 +/- 11%, 13 subjects) and patients with a low percentage (29 +/- 14%,12 subjects) of spermatozoa with functional-polarized mitochondria with high delta(psi)m. Our microscopic investigations of spermatozoa of seven asthenozoospermic patients reveal that the deformed and unusually thickened sperm midpieces (50-70% of cells), occasionally with persistent cytoplasmic droplet, contain supernumerary mitochondria with normal substructure, full oxidoreductive capability and high delta(psi)m. The midpiece deformations cause nonprogressive movement or immotility. They can also appear in smaller number of spermatozoa (5-35% of cells) in patients with normal sperm motility. Moreover, in three cases of asthenozoospermia midpiece malformations were accompanied by abnormal morphology of outer dense fibers and axoneme. The cytochemical, fluorescence and SEM studies showed the absence of midpieces in many (60-80%) spermatozoa in some other cases of asthenozoospermia. The morphological observations corresponded with flow cytometry analysis of Mito Tracker Green FM-stained spermatozoa. Our results suggest that in some cases of asthenozoospermia the sperm mitochondria can be functionally active and display high delta(psi)m in large number of cells. The results may suggest that asthenozoospermia does not necessarily result from energetic disturbances of sperm mitochondria. The low sperm motility may be associated with deformations of the mitochondrial sheath containing functional mitochondria. The combination of fluorescence microscopy and flow cytometry with electron microscopic investigations is a sensitive, precise and comprehensive examination which helps discover sperm abnormalities responsible for asthenozoospermia.  相似文献   

19.
Li JY  Wang JK  Zeng YM 《生理学报》2007,59(1):13-18
线粒体通透性转换(mitochondrial permeability transition,MPT)导致线粒体氧化应激性损伤。近年研究认为,位于线粒体外膜的外周苯二氮节受体(peripheral benzodiazepine receptor,PBR)参与了线粒体的重要生理功能。本研究在心肌细胞线粒体水平探讨激动PBR能否抑制Ca^2+诱发的MPT。分离Sprague—Dawley大鼠心肌细胞线粒体,将PBR激动剂Ro5-4864(50、100、200μmol/L)和线粒体孵育,利用150μmol/L Ca^2+诱发MPT,部分线粒体在与100μmol/L Ro5-4864孵育前5min加入MPT孔道开放剂苍术苷(atractyloside,ATR)。采用分光光度法观察线粒体膨胀情况:Westernblot检测线粒体细胞色素C(cytochrome C,CytoC)释放;利用荧光探针JC-1在激光共聚集显微镜下观察线粒体膜电位的变化。50、100、200μmol/L Ro5-4864均显著抑制Ca^2+诱发的520nm处线粒体吸光度的下降,而且抑制Ca^2+引起的线粒体CytoC释放和线粒体膜电位下降,但ATR可阻断R05—4864的上述作用。结果提示,PBR激动剂可抑制大鼠心肌MPT,保持线粒体CytoC含量和稳定线粒体膜电位,减轻线粒体损伤。PBR的激活可能成为减轻心肌细胞应激性损伤及心肌保护的新方法。  相似文献   

20.
The cytotoxic and protective effects of selected synthetic chalcone analogues have been shown in previous studies. We studied their cytotoxic effect on the modification of mitochondrial membrane potential and on DNA. The first spectral information about the methoxy group as well as the dimethylamino substituent in E-2-arylmethylene-1-benzosuberones molecule was obtained by absorption and emission spectra. The cytotoxic effect of both cyclic chalcone analogues on DNA were detected by alkaline single-cell gel electrophoresis. Better fluorescent chalcone analogue E-2-(4′-dimethylamino-benzylidene)-1-benzosuberone was studied further in fresh isolated mitochondria. The decrease of rat liver mitochondria membrane potential (Δψ) was observed by fluorescence emission spectra. For the collapsing of mitochondrial potentials and as the negative control of mitochondrial function the CCCP uncoupler was used. The absorption maximum of the methoxy group was found at a shorter wavelength (λ = 335 nm) than that of the dimethylamino group (λ = 406 nm). The excitation spectra were very similar to the absorption spectra for both molecules but the emission spectra showed a better fluorescence for dimethylamino derivative. After the addition of E-2-(4′-dimethylamino-benzylidene)-1-benzosuberone to the intact mitochondria the decrease of mitochondrial membrane potential Δψ was observed by emisssion fluorescence spectra. Both cyclic chalcone analogues induced DNA damage, which was detected by alkaline comet assay. Mainly the apoptotic cells were detected, but necrotic cells were also present. Similarities in the percentages of DNA migration from the head were observed in both treatment groups. Both benzosuberones, with dimethylamino- and methoxy- substituent, were very active biologically, as shown by DNA results of the comet assay. Due to its better fluorescence properties, only the fluorophore with dimethylamino substituent was selected for further study of the function of rat liver mitochondria. Decline of mitochondrial function as well as mitochondrial DNA damage were evident between experimental and control groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号