首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The difficulty in mapping the gene for chloramphenicol resistance (cml R) in Streptomyces coelicolor A3(2) stock strains is possibly due to its location on different sites of the chromosome in various mixed subelones. Fresh isolates from CmlR strains show single unequivocal locations of cml R. The same holds for CmlR strains derived as revertants from CmlS variants. The two best established sites for cml R are one between cys A and met A, the other at right of arg A, possibly in the right empty arc of the map (Fig. 2). The cml R gene was assumed to be on a transposon (SCTn1), together with a gene for arginine-succinate synthase (argG), a gene for chromosome transfer (tra) and a gene for aereal mycelium formation (amy). In a CmlR revertant, the cml R gene appears disjoined from argG (Fig. 5), thus showing the ability of SCTnl to be split and partially transposed. The possible wide occurrence of transposons in the genus Streptomyces is discussed.  相似文献   

2.
Summary Four different types of crosses have been used to establish the order of the four genes in the qa gene cluster of Neurospora crassa, which encode the following proteins involved in the inducible catabolism of quinic acid: a regulatory (activator) protein (qa-1), catabolic dehydroquinase (qa-2), quinate dehydrogenase (qa-3), and dehydroshikimate dehydrase (qa-4). The four crosses involved (1) the ordering of the four qa genes relative to the closely-linked me-7 locus; (2) the ordering of the three other qa genes relative to a qa-1 S mutant; (3) the use of a three factor cross-qa-3xqa-4 qa-2 and (4) the use of four factor crosses-qa-1 S xqa-3 qa-4 qa-2. The results of all four types of crosses agree in establishing an apparently definitive proximal to distal order, within the right arm of linkage group VII, i.e., qa-1 qa-3 qa-4 qa-2 me-7.The significance of a definitive establisment of the gene order within the qa cluster for an understanding of the organization and mechanism of genetic regulation in this cluster is discussed.  相似文献   

3.
Summary The fpg + gene of Escherichia coli coding for formamidopyrimidine-DNA glycosylase was previously cloned on a multicopy plasmid. The plasmid copy of the fpg + gene was inactivated by cloning a kanamycin resistance gene into the open reading frame, yielding the fpg-1:: Knr mutation. This mutation was transferred to the chromosome in the following steps: (i) linearization of the plasmid bearing the fpg-1::Knr mutation and transformation of competent bacteria (recB recC sbcB); (ii) selection for chromosomal integration of the fpg-1::Knr mutation; (iii) phage P1 mediated transduction of the fpg-1::Knr mutation in the AB1157 background. The resulting fpg - mutant exhibited no detectable Fapy-DNA glycosylase activity in crude lysates. The insertion mutation was localized by means of genetic crosses between mtl and pyrE, at 81.7 min on the E. coli linkage map. Sequence analysis confirmed this mapping and further showed that fpg is adjacent to rpmBG in the order fpg, rpmGB, pyrE. The formamidopyrimidine-DNA glycosylase defective strain does not show unusual sensitivity to the following DNA damaging treatments: (i) methylmethanesulfonate, (ii) N-methyl-N-nitro-N-nitrosoguanidine, (iii) ultraviolet light, (iv) -radiation. The fpg gene is neither part of the SOS regulon nor the adaptive response to alkylating agents.  相似文献   

4.
A mutation to chloramphenicol resistance (Cmlr) stimulates production of macrolide avermectin in Streptomyces avermitilis; production starts in the early stationary phase. By labeling in vivo, the Cmlr mutation was shown to stimulate phosphorylation of Ser and Thr in several proteins in the same growth phase. Autophosphorylation of active protein kinases (PK) was analyzed in gel after one- or two-dimensional PAGE for the original S. avermitilis strain ATCC 31272, its Cmlr mutant, and a Cmls revertant. An increase in in vivo phosphorylation was associated with an increase in autophosphorylation of Ser/Thr-PK 41K, 45K, 52K, 62K, and 85K and complete suppression of autophosphorylation of PK 66K. Comparison of the PK molecular weights and pI with the parameters deduced for putative PK encoded by S. avermitilis genes identified the 41K, 45K, 52K, 62K, and 85K proteins as pkn 24, pkn 32, pkn 13, pkn12, and pkn5, respectively. Prenylamine lactate, a modulator of calmodulin-dependent processes, substantially reduced the avermectin production, impaired the Cml resistance, and selectively inhibited Ca2+-dependent PK 85K in the Cmlr mutant. It was assumed that PK 85K is involved in regulating the avermectin production.  相似文献   

5.
Summary Covalently closed circular (ccc) DNA of uniform monomer size (c. 18×106 daltons) and restriction endonuclease cleavage pattern was isolated from strains of S. coelicolor A3(2) of differing constitution in respect of the SCP1 sex factor: SCP1+, SCP1, SCP1- and NF (integrated SCP1). No such ccc DNA was found in strains of S. lividans 66 or S. parvulus ATCC 12434 whether or not they contained SCP1. These results confirmed that the 18×106 dalton plasmid is not, and does not include, SCP1, which has not so far been isolated by any of a variety of methods.Genetic data served to identify a second sex factor, SCP2, postulated to be present in SCP2+ state in the starting strains and to be capable of mutation to a variant form, SCP2*, with enhanced sex factor activity. From SCP2* strains, SCP2- cultures were isolated, at an average spontaneous frequency of about 0.8%. Crosses of pairs of SCP1- SCP2- strains were almost, but not completely, sterile; thus SCP1 and SCP2 probably contribute nearly all the fertility naturally occurring in the A3(2) strain. The two sex factors share the property of exerting an effect that may be comparable with lethal zygosis caused by F in E. coli: it is shown by SCP1-carrying strains against SCP1-, or SCP2* (but not SCP2+) strains against SCP2- and is revealed as a narrow zone of growth inhibition surrounding the plasmid-carrying culture on a background of the appropriate plasmid-negative strain.Genetically defined SCP2- strains lacked the ccc DNA found in SCP2+ and SCP2* strains. Thus this DNA apparently represents the SCP2 sex factor. A preliminary restriction endonuclease cleavage map of SCP2 was constructed, with single sites for EcoRI and HindIII, four sites for SalPI (=PstI) and more than 20 sites for SalGI (SalI).  相似文献   

6.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

7.
Summary A derivative of the IncP-1 plasmid RP1, temperature-sensitive for maintenance, was inserted into the Pseudomonas aeruginosa chromosome by selection for a plasmid marker (carbenicillin resistance) at nonppermissive temperature. In one strain, PAO 1000, the plasmid was stably integrated in the trpA, B gene cluster mapped at 27 min, as shown by the following evidence. (i) Trp+ transductants lost all plasmid markers. (ii) Cleared lysates of PAO 1000 showed no plasmid band typical of the autonomous RP1 in agarose gel electrophoresis. (iii) No transfer of carbenicillin resistance by PAO 1000 was detectable. (iv) PAO 1000 mobilised the chromosome from an origin at, or very near, the plasmid insertion site with high frequency (recovery of proximal markers 10–3 per donor). Matings on the plate with and without interruption of conjugation showed that chromosome transfer was unidirectional. (v) Recombinants from PAO 1000-mediated crosses did not inherit plasmid markers or the trpA, B mutation. A derivative of PAO 1000 was obtained which had lost the Hfr property and all plasmid markers except carbenicillin resistance. This strain (PAO 1001), when carrying the autonomous RP1 plasmid, was capable of unidirectional chromosome mobilisation like PAO 1000, but with 50-fold lower efficiency. We propose that integration of the temperature-sensitive RP1 plasmid in PAO 1000 occurred via transposition of Tnl, the element specifying carbenicillin resistance.  相似文献   

8.
Summary A fifth cytoplasmic mutation (cap r 1) obtained inPodospora anserina is described. In addition to chloramphenicol resistance it confers a strong deficiency in cytochrome aa3 and impairs the germination of ascospores. Genetic analysis shows: 1) strict maternal inheritance of (cap r 1) allele; 2) selection against the (cap r 1) allele as well in sexual crosses as during vegetative growth; 3) complete reversion of this selection by even low concentration of CAP. On the basis of their cytoplasmic inheritance and altered cytochrome spectra the five cytoplasmic mutations are assumed to be mitochondrial. Analysis of crosses between them allows to class them in 3 loci, 2 of which being closely linked.  相似文献   

9.
Summary Data are presented which indicate that plasmid pRD1 can be transferred from Escherichia coli to strains of Azospirillum brasilense with a frequency of about 10-7. The reverse was also possible; in this case the frequency of transfer appeared to be much higher, about 5×10-1. Transfer of the plasmid was also obtained between strains of A. brasilense; in this cross the transfer frequency was very high (about 10-1). Moreover the pRD1 plasmid seems very stable in A. brasilense cells.Abbreviations ade, his, and trp are requirements for adenine, histidine, and tryptophan, respectively - carb, kan, rif, spc, and tet are resistance to carbenicillin, kanamycin, spectinomycin, and tetracycline, respectively - recA56 recombination deficiency - nif genes for nitrogen fixation  相似文献   

10.
The three existing dominant gain-of-function Drop alleles, Dr 1, Dr Mio and Dr We , previously assumed to define a single locus, severely disrupt eye development. Genetic analysis of ethylmethanesulphonate (EMS) and irradiation-induced revertants revealed that the Drop mutations define two loci: the Drop locus, which is defined by the Dr 1 and Dr Mio mutants, and a separate locus defined by the Dr We mutation, which has been renamed Wedge. The majority of the Dr 1 and Dr Mio revertants are embryonic lethal in trans, mutant embryos exhibiting trachea that fail to join the Filzkörper, thus revealing a role for the Drop gene in embryogenesis. Clonal analysis of lethal revertant alleles suggests a role for both genes in eye development. In the Drop homozygous mutant clones, the outer photoreceptor cells R1–R6 develop aberrantly. Wedge, however, is not required by the developing photoreceptor cells but its absence does disrupt normal ommatidial alignment. Although the Drop and nearby string loci were shown to be genetically distinct, both Dr 1 and Dr Mio were found to interact in trans with lesions at the string locus, causing loss and derangement of bristles and loss of neuromuscular coordination.  相似文献   

11.
Summary Mutator activity of the maize mutator (Mu) system varies for different loci. Mutation frequencies as high as 7.54x10–5 and as low as 4.0x10–6 are observed for 5 loci (i.e., y 1,yg2, bz1, sh2, and wx). For the waxy locus, a higher mutation frequency is observed in Mu plants crossed as males than when Mu plants function as females. The frequency of unselected mutations also is found to be higher in Mu plants crossed as males than in the first-generation Mu plants crossed as females. The mutation frequency of the y1 locus, however, does not differ in the male or female crosses. Mu-induced mutation frequencies vary with respect to loci and, for some loci, may depend on other factors such as the sex of the Mu parent or the previous crossing history of the Mu parent. More limited data have been obtained for 4 additional loci(su1, c1, c2 and o2).Journal Paper No. J-11487 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2623  相似文献   

12.
Summary A new locus in Drosophila melanogaster that is required for the correct expression of segmental identity has been discovered. The new locus, termed polyhomeotic (ph), is X-linked and maps cytologically to bands 2D2-3. Homozygous ph flies have homeotic transformations similar to those of known dominant gain of function mutants in the Antennapedia and bithorax complexes (ANT-C, BX-C), and in addition show loss of the humerus. ph interacts with three other similar mutations: Polycomb (Pc), Polycomblike (Pcl), and extra sex comb (esc), and acts as a dominant enhancer of Pc. The expression of ph depends on the ANT-C and BX-C dosage. ph has no embryonic phenotype, but temperature shift studies on ph 2 show that the ph + product is required during embryogenesis and larval development. We propose that ph mutants in some way disrupt the normal expression of the ANT-C and BX-C, and, therefore, that ph + is needed for maintenance of segmental identity.  相似文献   

13.
Summary Wild-type Myxococcus xanthus cells move across solid surfaces by gliding. However no locomotory organelles for gliding have as yet been identified. Two sets of genes are required for gliding in M. xanthus: Gene System A is necessary for the gliding of isolated cells and Gene System S comes into play when cells are close together. The product of the mgl locus is required for both types of gliding and therefore may be a structural component of the gliding organelle. To begin to investigate the function of mgl in gliding a 12 kb segment of M. xanthus DNA containing the locus was cloned in Escherichia coli and returned to Myxococcus by specialized transduction with coliphage P1. In M. xanthus the chimeric plasmid integrates into the chromosome by recombination between the cloned segment and its homolog in the recipient chromosome forming a tandem duplication of the cloned segment with the vector sequences at the novel joint. The construction of partial diploids in this manner facilitated dominance tests and interallelic crosses with ten mgl alleles. We also describe a method for the analysis of tandem duplications that precisely maps alleles to a specific copy of the duplicated sequences. This method provides evidence for the dominance of mgl + over the mgl - alleles. It also reveals what appears to be gene conversion at this locus during recombination between a cloned mgl sequence and its homolog in the chromosome.  相似文献   

14.
Summary Primary and secondary spore clones were analyzed from two- and three-factor crosses involving the mitochondrial markers conferring resistance to antimycin (A R ), chloramphenicol (C R ), and erythromycin (E R ). As in zygote clones (Seitz-Mayr et al., 1978), transmission of markers is higher in two-factor trans-crosses than in cis-crosses. Except transmission of C R in the cross A R C R E R xA S C S E S , no significant differences between cis- and trans-configuration were observed in three-factor crosses. In contrast to zygote clones, in spore clones transmission rates of the two or three markers in a given cross are roughly equal. 18 out of 20 secondary spore clones of different mitochondrial phenotypes appeared to be homoplasmic, whereas 2 still continued to segregate. One of these spore isolates was analyzed, and segregation was found to continue for more than 150 generations after spore germination. Whereas up to more than 80% of zygote clones in certain crosses were uniform, only 2 out of 91 tetrads were uniform, i.e. all four spores were homoplasmic for the same mitochondrial genotype. Presence or absence of recombinant mitochondrial phenytypes among secondary spore clones from tetrads indicated, whether, cytoplasmic mixing had occurred in the original zygote or not. Within an ascus, the number of spores containing recombinant genotype(s) is a direct measure for the extent of cytoplasmic mixing in the zygote. In 82 tetrads analyzed, the number of tetrads with 0, 1, 2, 3, and 4 spores containing recombinant genotype(s) were 25, 37, 14, 5, and 1, respectively. In conclusion, the extent of cytoplasmic mixing at the cell stage before forespore membrane formation is highly variable.  相似文献   

15.
Five strains of Bacillus thuringiensis that produce crystalline δ-endotoxin were used as parental strains in an effort to isolate acrystalliferous (Cry) mutants: HD-2 (B. thuringiensis var. thuringiensis, flagellar serotype 1); HD-1 and HD-73 (both var. kurstaki, serotype 3ab); HD-4 (var. alesti, serotype 3a); and HD-8 (var. galleriae, serotype 5ab). The parental strains contain complex plasmid arrays that have been previously characterized (González and Carlton, 1980). The plasmid patterns of both Cry and Cry+ variants were analyzed and compared to the parental strains using a modified Eckhardt (1978) lysate-electrophoresis method. Most Cry mutants derived from strain HD-2 were found to exhibit a distinctive colony morphology which facilitated their isolation. Loss of crystal production was associated with loss of a 75-Md plasmid. A 50-Md plasmid of strain HD-73 was lost in the Cry mutants. Crystal production in strain HD-4 appears to be associated with a plasmid about 105 Md in size; in strain HD-1, a smaller plasmid (29 Md in size) seems to be involved. In strain HD-8, a large plasmid (˜130 Md in size) is implicated in crystal production. Direct bioassay of several of the mutant strains has confirmed the loss of δ-endotoxin activity in the acrystalliferous isolates. The evidence obtained supports the notion of a relationship between specific extrachromosomal DNA elements and δ-endotoxin production in B. thuringiensis, and suggests that in each strain only a single plasmid is involved, although the size of the implicated plasmid varies from one strain to another.  相似文献   

16.
Summary Two spore genes, spoOB and spoIIG have been cloned from the B. subtilis genome library, constructed by ligating Sau3A partially digested DNA to the dephosphorylated pHV33 plasmid vector at its BamH1 site.An hybrid plasmid pGsOB2, carrying a 1.7 Kb insert of B. subtilis DNA amplifiable in E. coli was cloned. This recombinant plasmid was capable of transforming the appropriate B. subtilis Rec+ and Rec- recipients to Spo+ at very high efficiency. The pGsOB2 was further subcloned and four hybrid plasmids, pGsOB8, pGsOB9, pGsOB10 and pGsOB11 were selected and their restriction enzyme maps established. The four subcloned hybrid plasmids retained their entire transforming activity in both Rec+ and Rec- recipients although two of them carry the insert in an inverse orientation, indicating thus, that the spoOB gene in these plasmids is being transcribed by the B. subtilis RNA polymerase using an internal promotor of the cloned DNA fragment. The adjacent genes spoIVF and pheA, mapped respectively to the right and left of the spoOB locus, that normally show 90% cotransformation, are absent on the cloned DNA fragments. The cloned hybrid plasmids have been expressed in E. coli minicells and it was shown that the spoOB locus encoded a polypeptide of 24 K.We have also cloned the spoIIG gene in two hybrid plasmids, pGsIIG24 and pGsIIG26, carrying respectively inserts of 2 and 3 Kb. From the transforming activity and the endonuclease cleavage maps it was shown that these two hybrid plasmids do not carry the entire spoIIG locus. The use of these plasmids for further cloning of this gene is discussed.  相似文献   

17.
A theoretical as well as an experimental study of the effect of the partitioning system on plasmid R1drd-19 incompatibility was performed. The theoretical numerical analysis (by computer) was based upon the following assumptions: (i) The partitioning (par) mechanism is independent of the replication (rep) and replication control (cop) mechanism. (ii) A par mutation causes random (binomial) distribution of plasmid copies between the daughter cells at cell division. (iii) In the par+ case, the plasmid copies are equipartitioned and selected randomly for partitioning. (iv) Selection of plasmid copies for replication is random. (v) Two different replication control systems were considered: Model 1 assumes that the plasmid copy number is set to exactly 2n before cell division, whereas in Model 2 exactly n copies are synthesized per cell per cell cycle. Numerical analysis was performed for the n values 2–8. The result was that in all cases (par+/par+, par+/par, par/par), steady states with respect to copy number distribution within the heteroplasmid population were rapidly (within five or six generations) established, giving constant loss rates. The rate of loss was slightly higher in the par/par case than in the other two. The two replication control models gave almost identical loss rates. In the par+/par case, the par+ plasmid had an advantage over the par plasmid. The experimental approach was to create heteroplasmid populations of Escherichia coli by introducing two genetically marked derivatives of plasmid R1drd-19 and then follow the reduction in the relative size of this population during exponential growth in LB medium. The loss rate was essentially the same in the par+/par+ and par+/par combination and slightly higher in the par/par case, suggesting that plasmid incompatibility mainly is caused by the replication and copy number control system. In the par+/par situation, the par+ plasmid had a pronounced advantage over the par plasmid. The par region of plasmid R1 (without the basic replicon) was cloned onto the vector pSF2124. A par (deletion) mutation was not complemented by par+. Plasmid pSF2124, which does not seem to carry a par system of its own, could use the R1 par system, adding to the conclusion that par is independent of rep and cop. Plasmids pSF2124 and R1drd-19 are completely compatible, whereas plasmid pSF2124 carrying the R1 par system and plasmid R1drd-19 showed a weak incompatibility although the copy numbers of the two plasmids were not affected in the heteroplasmid cells. Hence, the partitioning system causes incompatibility, but the effect is weak compared to that of the cop system. The result is consistent with some sort of assortment of plasmids before partitioning.  相似文献   

18.
Summary Rec mutants of Bacillus subtilis have been tested for complementation by the recA gene of Proteus mirabilis (recApm) which was introduced into B. subtilis via the plasmid pHP334. In the recE4 mutant of B. subtilis the plasmid pHP334 restored significantly the defects in RecE functions tested: UV-sensitivity, homologous recombination (transduction and transformation) and prophage induction.Although serological methods to detect the presence of RecApm protein in B. subtilis have been unsuccessful, our results strongly indicate that the recE function of B. subtilis is analogous to the recA function of P. mirabilis.Abbreviations Cmr resistance to chloramphenicol - Emr resistance to erythromycin - Tcr resistance to tetracycline - SDS sodium dodecyl sulfate - UV ultraviolet - AS ammonium sulfate  相似文献   

19.
Summary Spontaneous chlorate-resistant (CR) mutants have been isolated from Chlamydomonas reinhardtii wildtype strains. Most of them, 244, were able to grow on nitrate minimal medium, but 23 were not. Genetic and in vivo complementation analyses of this latter group of mutants indicated that they were defective either at the regulatory locus nit-2, or at the nitrate reductase (NR) locus nit-1, or at very closely linked loci. Some of these nit-1 or nit-2 mutants were also defective in pathways not directly related to nitrate assimilation, such as those of amino acids and purines. Chlorate treatment of wild-type cells resulted in both a decrease in cell survival and an increase in mutant cells resistant to a number of different chemicals (chlorate, methylammonium, sulphanilamide, arsenate, and streptomycin). The toxic and mutagenic effects of chlorate in minimal medium were not found when cells were grown either in darkness or in the presence of ammonium, conditions under which nitrate uptake is drastically inhibited. Chlorate was also able to induce reversion of nit mutants of C. reinhardtii, but failed to produce His + revertants or Arar mutants in the BA-13 strain of Salmonella typhimurium. In contrast, chlorate treatment induced mutagenesis in strain E1F1 of the phototrophic bacterium Rhodobacter capsulatus. Genetic analyses of nitrate reductase-deficient CR mutants of C. reinhardtii revealed two types of CR, to low (1.5 mM) and high (15 mM) chlorate concentrations. These two traits were recessive in heterozygous diploids and segregated in genetic crosses independently of each other and of the nit-1 and nit-2 loci. Three her loci and four lcr loci mediating resistance to high (HC) and low (LC) concentrations of chlorate were identified. Mutations at the nit-2 locus, and deletions of a putative locus for nitrate transport were always epistatic to mutations responsible for resistance to either LC or HC. In both nit + and nit chlorate-sensitive (CS) strains, nitrate and nitrite gave protection from the toxic effect of chlorate. Our data indicate that in C. reinhardtii chlorate toxicity is primarily dependent on the nitrate transport system and independent of the existence of an active NR enzyme. At least seven loci unrelated to the nitrate assimilation pathway and mediating CR are thought to control indirectly the efficiency of the nitrate transporter for chlorate transport. In addition, chlorate appears to be a mutagen capable of inducing a wide range of mutations unrelated to the nitrate assimilation pathway.  相似文献   

20.
The diversity of alleles at the gliadin loci Gli-U1 and Gli-M b 1 was studied in the tetraploid species Aegilops biuncialis (UUMbMb). The collection of 41 Ae. biuncialis accessions and F2 seeds obtained from five crosses served as the material used in this study. Gliadins were separated by acid polyacrylamide gel electrophoresis. To determine genomic affiliation (U or Mb) of components of Ae. biuncialis gliadin pattern, accessions of Ae. umbellulata and Ae. comosa were analyzed. In Ae. biuncialis accessions, 14 alleles were identified at the locus Gli-U1 and 12 alleles, at the locus Gli-M b 1. The results testify to a high degree of allele diversity at major gliadin-coding loci of homeologous group 1 chromosomes of Ae. biuncialis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号