共查询到20条相似文献,搜索用时 15 毫秒
1.
Acquired freeze–thaw tolerance was investigated for Lactococcus lactis ssp. diacetylactis. Pre-treatment of microorganisms at less severe temperatures to initiate cold tolerance gave L. lactis ssp. diacetylactis improved cell viability after successive freezings and thawings. The ability of cells to survive freezing–thawing was dependent on factors experienced prior to freezing. Factors affecting lactic acid bacteria survival during freezing–thawing cycles include different diluents, growth phase, and cold temperatures. Viability experiments showed that this strain displaying cold shock cryotolerance had an improved survival capacity in stationary phase. The plasmid contents of lactic acid bacteria isolated from different types, strains DRC-2 and DRC-2C, were examined and compared with the plasmid contents of culture collection strains both before and after cold shock treatment. Using agarose gel electrophoresis, no obvious correlation between the cold shock response and the number of plasmids in the cell could be observed. 相似文献
2.
ABSTRACT. Supercooling points (SCP) and low temperature tolerance were determined for larval, pupal and adult stages of Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). No stage tolerates tissue-freezing. Ontogenetic changes in SCP profiles are similar for comparable developmental stages of diapause and non-diapause groups. Feeding larvae have SCPs near -7°C which decrease to -11°C in the postfeeding wandering phase of the final larval instar. The lowest SCPs are recorded for pupae at -23°C. The capacity to survive at -17°C varies with age of the diapausing pupae: 10-day-old pupae are less cold tolerant than pupae that have been in diapause for 45–80 days. Although the SCP of non-diapausing pupae is as low as in diapausing pupae, non-diapausing pupae are extremely sensitive to low temperature exposure and do not survive to adult eclosion when exposed to -17°C for as little as 20 min. The use of hexane to break pupal diapause has no effect on SCPs or low temperature tolerance. 相似文献
3.
Abstract. Little is known about the nature of injury due to cold shock, or its prevention by rapid cold-hardening, in insects. To understand these phenomena better at the system level, physiological and behavioural comparisons were made between control, cold shock injured, and rapidly cold-hardened flesh flies, Sarcophaga crassipalpis Macquart (Diptera, Sarcophagidae). Cold shock impaired the proboscis extension reflex in response to 0.125,0.5 and 1.0 M sucrose solutions. Cold shock-injured flies were unable to groom effectively and spent only 12.5% of the first 5 min following general dust application producing ineffectual leg movements. In contrast, control and rapidly cold-hardened flies exhibited normal grooming behaviour spending 92.4% and 94.1% of the first 5 min following generalized dust application grooming. Cold shock also decreased the mean resting membrane potential of tergotrochanteral muscle fibres from -65.9 mV in control flies to -41.6 m V. Conduction velocities of the three motor neurone populations innervating the tergotrochanteral muscle were all significantly lower in cold-shocked flies than in control or rapidly cold-hardened flies. Finally, cold shock impaired neuromuscular transmission as evidenced by a lack of evoked end plate potentials. 相似文献
4.
Cold-hardiness: a component of the diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. bullata 总被引:1,自引:0,他引:1
ABSTRACT. Diapausing pupae of Sarcophaga crassipalpis Macquart and S. bullata Parker reared at 20 or 25C readily survive exposure to - 10C for at least 25 days. In contrast, non-diapausing pupae produced by a variety of means are consistently intolerant of the low temperature. Non-diapausing pupae are not immediately killed by exposure to -10C: pupae exposed to the low temperature for up to 3 days proceed with pharate adult development but ultimately die before adult eclosion. Unlike many temperate zone insects, diapausing flesh fly pupae do not require a period of chilling for induction of cold-hardiness, and the attribute of cold-hardiness cannot be separated from other features of the diapause syndrome. Some cold-hardiness is already acquired during the third larval instar: diapause-destined larvae exposed to -10C are more successful in pupariating than non-diapause-destined larvae of the same age. 相似文献
5.
Effects of environmental factors on circadian activity in the flesh fly,
Sarcophaga crassipalpis 总被引:1,自引:0,他引:1
Abstract.The diel locomotor activity patterns of wandering larvae in the flesh fly, Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae), were examined using a novel apparatus and shown to be primarily diurnal, but with a minority (37%) showing nocturnal activity. In response to the environmental stress of heat shock, a significantly larger proportion (72%) of the larvae became nocturnal. In comparison, adult circadian activity also was predominantly diurnal, but not correlated with the larval activity patterns. In addition, adult patterns showed age-related changes in entrainment and free running period. Finally, the phase of circadian-gated adult eclosion was shown to be entrained by a 3-day exposure to light–dark cycles delivered prior to pupariation, with the phase maintained throughout pupal–adult metamorphosis under constant dark conditions. These results demonstrate that environmental changes may have profound effects on the expression of 24-h activity patterns and circadian rhythms during different life stages throughout development. 相似文献
6.
7.
Monastyrskaya EA Andreeva LV Duchen MR Wiegant F Bayda LA Manukhina EB Malyshev IY 《Biochemistry. Biokhimii?a》2003,68(7):816-821
Dosed adaptation to environmental factors is an efficient non-drug means for increasing the resistance of organs or the body as a whole. We demonstrated earlier that nitric oxide (NO) plays an important role in adaptive defense of the organism, in particular due to activation of heat shock protein (HSP) synthesis. A key question remained open—to what extent the formation of adaptive defense depends on central mechanisms and to what extent on the intracellular mechanisms immediately responding to the adapting factor, and whether the NO-dependent activation of HSP synthesis plays a role in adaptation of isolated cells. In the present study we looked into the possibility of producing a protective effect of adaptation to heat in cell culture. A 6-day adaptation to heat limited to 17% the decrease in metabolic activity induced by heat shock in H9c2 cardiomyoblasts. The development of adaptation was associated with increased NO production. Treatment of cells with the inhibitor of NO synthase L-NNA (100 M) prevented the development of adaptive protection. Adaptation of cell culture enhanced synthesis of HSP70 but not HSP27. Blockade of HSP70 synthesis with quercetin (50 M) left unchanged the protective effect of adaptation. Inhibition of NO synthesis restricted the adaptation-induced HSP70 synthesis. Therefore, the formation of adaptation at the cell level may result from a direct action of an environmental factor without participation of neurohumoral factors. Such adaptation involves NO-dependent mechanisms divorced from the activation of HSP70 synthesis. 相似文献
8.
9.
Seasonal variation in generation time, diapause and cold hardiness in a central Ohio population of the flesh fly, Sarcophaga bullata 总被引:1,自引:0,他引:1
Abstract.
- 1 Generation time, diapause phenology and cold tolerance of the flesh fly, Sarcophaga bullata, were examined under confined natural conditions in central Ohio. In this locality, the fly can complete a maximum of four generations annually.
- 2 Very few pupae entered diapause in the first and second generations (May to July in 1988). In the third generation (August) 37% of the pupae entered an overwintering diapause, as did all pupae from the fourth generation (September).
- 3 The adult eclosion date in the spring and annual generation time can be predicted accurately from degree day data.
- 4 Cold tolerance of the field-overwintering portion of the population was high. After 30 days under field conditions, diapausing pupae readily survived a 7-day exposure to — 17°C. Glycerol appears to be the major cryoprotectant in S.bullata, and glycerol concentrations in the field population (95–142 mm ) remained high throughout the winter.
- 5 In contrast, diapausing flies reared under laboratory conditions (20°C, 12:12 LD) were less cold tolerant, and glycerol concentrations were lower (6.9–21.2 mm ). Field conditions thus promote the acquisition of high levels of cold tolerance, presumably as a consequence of the accumulation of higher concentrations of glycerol.
- 6 In spite of differences in the cold tolerance of laboratory and field flies, the supercooling points of the two groups of flies were nearly the same, thus implying that the supercooling point is not a good indicator of cold tolerance.
10.
11.
Although the immediate effects of temperature stress are well documented, the longer‐term effects of such stresses are more poorly known. In these experiments, we investigate the effects of suboptimal and supraoptimal temperatures during pharate adult development on fecundity in the flesh fly, Sarcophaga crassipalpis Macquart. A 1 h cold shock at ?10°C during the red‐eye pharate adult stage decreases the fecundity of both sexes. Induction of rapid cold hardening by pre‐treatment at 0°C for 2 h partially prevents reproductive impairment. Heat shock of pharate adults for 1 h at 45°C also reduces fecundity in both sexes, but inducing thermotolerance by pre‐treatment at 40°C for 2 h affords protection only to females. Males heat shocked at 45°C or first pre‐treated at 40°C consistently fail to transfer sperm to the females. The injury inflicted on males by heat shock is most pronounced when the stress is administered to pharate adults or adults; wandering larvae and true pupae are unaffected. The implications of these data for naturally occurring populations are discussed. 相似文献
12.
LI Zhengyu ZHAO Xia & WEI Yuquan . Department of Gynecology Obstetrics West China Second Hospital of Sichuan University Chengdu China . Key Laboratory of Biotherapy of Human Diseases of Ministry of Education West China Hospital of Sichuan university Chengdu China 《中国科学:生命科学英文版》2004,47(2):107-114
With progressing recognition of apoptosis in bio-logical and medical sciences, the apoptotic signal transduction has rapidly become a dominant project to reveal the molecular mechanisms of apoptotic process. A lot of researches about apoptotic signal transduction have showed the expression of heat shock proteins was closely correlated with cell growth and differen-tiation, and involved in the regulation of apoptosis in different signal transduction pathways. Here we re-view the effects of hsps… 相似文献
13.
14.
Abstract Water balance characteristics of temperate zone fly pupae are compared with the characteristics of flies inhabiting the tropics. The flies, all of which were reared without diapause, had very similar equilibrium weights that were quite high (av 0.90-0.92), thus implying a limited capacity to absorb water from a subsaturated atmosphere. Likewise, the critical transition temperatures (CTT) were nearly the same for all the flies. Net transpiration rates at 20o C are a function of size, but the rate is less size dependent as temperature increases. When water loss is examined across a broad temperature range, as described by activation energies, it is apparent that the tropical flies lose water at a greater rate than their temperate zone counterparts. Activation energy may be a good parameter to use in evaluating habitat preference and suitability for a species because it describes water loss as a function of temperature, and thus is likely to be a good indicator of the insect's response to the fluctuating temperatures that occur naturally. 相似文献
15.
16.
17.
Effect of heat shock,pretreatment and hsp70 copy number on wing development in Drosophila melanogaster 总被引:3,自引:0,他引:3
Naturally occurring heat shock (HS) during pupation induces abnormal wing development in Drosophila; we examined factors affecting the severity of this induction. The proportion of HS-surviving adults with abnormal wings varied with HS duration and intensity, and with the pupal age or stage at HS administration. Pretreatment (PT), mild hyperthermia delivered before HS, usually protected development against HS. Gradual heating resembling natural thermal regimes also protected wing development against thermal disruption. Because of the roles of the wings in flight and courtship and in view of natural thermal regimes that Drosophila experience, both HS-induction of wing abnormalities and its abatement by PT may have marked effects on Drosophila fitness in nature. Because PT is associated with expression of heat-inducible molecular chaperones such as Hsp70 in Drosophila, we compared thermal disruption of wing development among hsp70 mutants as well as among strains naturally varying in Hsp70 levels. Contrary to expectations, lines or strains with increased Hsp70 levels were no more resistant to HS-disruption of wing development than counterparts with lower Hsp70 levels. In fact, wing development was more resistant to HS in hsp70 deletion strains than control strains. We suggest that, while high Hsp70 levels may aid cells in surviving hyperthermia, high levels may also overly stimulate or inhibit numerous signalling pathways involved in cell proliferation, maturation and programmed death, resulting in developmental failure. 相似文献
18.
A comparison of the responses of tropical and temperate flies (Diptera: Sarcophagidae) to cold and heat stress 总被引:1,自引:0,他引:1
Cheng-Ping Chen Richard E. Lee Jr David L. Denlinger 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1990,160(5):543-547
Summary Two flesh fly species from the tropical lowlands (Peckia abnormis and Sarcodexia sternodontis) were more susceptible to both cold-shock and heatshock injury than temperate flies (Sarcophaga crassipalpis and S. bullata) and a fly from a tropical high altitude (Blaesoxipha plinthopyga). A brief (2-h) exposure to 0°C elicits a protective response against subsequent cold injury at–10°C in the temperate flies and in B. plinthopyga but no such response was found in the flies from the tropical lowlands. However, both tropical and temperate flies could be protected against heat injury (45°C) by first exposing them to a mild heat shock (2 h at 40°C). The supercooling point is not a good indicator of cold tolerance: supercooling points of pupae were similar in all species, ranging from–18.9 to–23.0°C, and no differences were found between the tropical and temperate species. Among the temperate species, glycerol, the major cryoprotectant, can be elevated by short-term exposure to 0°C, but glycerol could not be detected in the tropical flies. Low-temperature (0°C) exposure also increased hemolymph osmolality of the temperate species, but no such increase was observed in the tropical lowland species. Adaptations to temperature stress thus differ in tropical and temperate flesh flies: while flies from both geographic areas share a mechanism for rapidly increasing heat tolerance, only the temperate flies appear capable of responding rapidly to cold stress. The presence of a heat shock response in species that lack the ability to rapidly respond to cold stress indicates that the biochemical and physiological bases for these two responses are likely to differ. 相似文献
19.
We have demonstrated that pretreatment but not post-treatment with okadaic acid (OA) can aggravate cytotoxicity as well as alter the kinetics of stress protein expression and protein phosphorylation in heat shocked cells. Compared to heat shock, cells recovering from 1 hr pretreatment of OA at 200 nM and cotreated with heat shock at 45°C for the last 15 min of incubation (OA→HS treatment) exhibited enhanced induction of heat shock proteins (HSPs) 70 and 110. In addition to enhanced expression, the attenuation of HSC70 and HSP90 after the induction peaks was also delayed in OA→HS-treated cells. The above treatment also resulted in the rapid induction of the 78 kDa glucose-regulated protein (GRP78), which expression remained constant in cells recovering from treatment with 200 nM OA for 1 hr, heat shocked at 45°C for 15 min, or in combined treatment in reversed order (HS→OA treatment). Enhanced phosphorylation of vimentin and proteins with molecular weights of 65, 40, and 33 kDa and decreased phosphorylation of a protein with a molecular weight of 29 kDa were also observed in cells recovering from OA→HS treatment. Again, protein phosphorylation in cells recovering from HS→OA treatment did not differ from those in cells treated only with heat shock. Since the alteration in the kinetics of stress protein expression and protein phosphorylation was tightly correlated, we concluded that there is a critical link between induction of the stress proteins and phosphorylation of specific proteins. Furthermore, the rapid induction of GRP78 under the experimental condition offered a novel avenue for studying the regulation of its expression. © 1996 Wiley-Liss, Inc. 相似文献
20.
The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat
shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of
researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological
behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different
levels, partly by the function of molecular chaperone. 相似文献