首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-d), or 2-nitrooxyethyl (12a-d), (*)NO-donor moiety is attached directly to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. The 2-nitrooxyethyl ester prodrugs (12a-d) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.07-2.8 microM range). All compounds released a low amount of (*)NO upon incubation with phosphate buffer (PBS) at pH 7.4 (1.0-4.8% range). In comparison, the percentage (*)NO released was significantly higher (76.2-83.0% range) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum, or moderately higher (7.6-10.1% range) when the nitrooxyethyl ester prodrugs were incubated in the presence of L-cysteine. These incubation studies suggest that both (*)NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases in the case of the diazen-1-ium-1,2-diolate esters (11a-d), or interaction with systemic thiols in the case of the nitrate esters (12a-d). O(2)-Acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (E)-3-(4-methanesulfonylphenyl)-2-phenylacrylate (11a) released 83% of the theoretical maximal release of 2 molecules of (*)NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester anti-inflammatory/(*)NO donor prodrugs offer a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

2.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs (NONO-coxibs) wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-c) NO-donor moiety is attached directly to the carboxylic acid group of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids were synthesized. The diazen-1-ium-1,2-diolate compounds 11a-c all released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (7.7-9.3% range). In comparison, the percentage of NO released was significantly higher (67.5-73.6% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acid (9a-c) would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. The 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acids (9a-c) exhibited AI activities (ID(50)=85.2-104.4 mg/kg po range) between that exhibited by the reference drugs aspirin (ID(50)=128.7 mg/kg po) and celecoxib (ID(50)=10.8 mg/kg po). Hybrid ester anti-inflammatory/NO-donor prodrugs (NONO-coxibs) offers a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

3.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs 12a-b) wherein an O(2)-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11, O(2)-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the bromomethyl group of 5-(4-bromomethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (9a), and its methanesulfonyl analog (9b), were synthesized. The diazen-1-ium-1,2-diolate compounds 12a-b released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (6.1-8.2% range). In comparison, the percentage NO released was significantly higher (76-77% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs 12a-b were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (10a), and its methanesulfonyl analog (10b), would be released from the parent NONO-coxib 12a or 12b upon in vivo cleavage by non-specific serum esterases. The hydroxymethyl compounds 10a-b were weak inhibitors of the cyclooxygenase-1 (COX-1) and COX-2 isozymes (IC(50)=3.7-10.5 microM range). However, the hydroxymethyl compounds 10a-b and the parent NONO-coxibs 12a-b exhibited good AI activities (ED(50)=76.7-111.6 micromol/kg po range) that were greater than that exhibited by the reference drugs aspirin (ED(50)=710 micromol/kg po) and ibuprofen (ED(50)=327 micromol/kg po), but less than that of celecoxib (ED(50)=30.9mumol/kg po). These studies indicate hybrid ester AI/NO-donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

4.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

5.
A new group of hybrid nitric oxide (NO) releasing anti-inflammatory (AI) ester prodrugs (NONO-NSAIDs) wherein a 1,3-dinitrooxy-2-propyl (12ac), or O2-acetoxymethyl-1-[2-(methyl)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (14ac), NO-donor moiety is directly attached to the carboxylic acid group of aspirin, indomethacin or ibuprofen were synthesized. NO release from the dinitrooxypropyl, or diazen-1-ium-1,2-diolate, ester prodrugs was increased substantially upon incubation in the presence of l-cysteine (12ac) or rat serum (14ac). The ester prodrugs (12ac, 14ac), which did not inhibit the COX-1 isozyme, exhibited modest inhibitory activity against the COX-2 isozyme. The NONO-NSAIDs 12ac and 14ac exhibited in vivo AI activity that was similar to that exhibited by the parent drug aspirin, indomethacin or ibuprofen when the same oral dose (μmol/kg) was administered. These similarities in oral potency profiles suggest these NONO-NSAIDs act as classical prodrugs that require metabolic activation by esterase-mediated hydrolysis. Hybrid NO-donor/anti-inflammatory prodrugs of this type (NONO-NSAIDs) offer a potential drug design concept targeted toward the development of anti-inflammatory drugs with reduced adverse gastrointestinal effects.  相似文献   

6.
A novel hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrug (NONO-coxib 14) wherein an O2-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (O2-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the CH2OH group of 3-(4-hydroxymethylphenyl)-4-(4-methylsulfonylphenyl)-5H-furan-2-one (12), was synthesized. The prodrug 14 released a low amount of NO (4.2%) upon incubation with phosphate buffer (PBS) at pH 7.4 which was significantly higher (34.8% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum. These incubation studies suggest that both NO and the parent compound 12 would be released from the prodrug 14 upon in vivo cleavage by non-specific serum esterases. The prodrug ester 14 is a selective COX-2 inhibitor that exhibited AI activity (ED50 = 72.2 mmol/kg po) between that of the reference drugs celecoxib (ED50 = 30.9 μmol/kg po) and ibuprofen (ED50 = 327 μmol/kg po). The NO donor compound 14 exhibited enhanced inhibition of phenylephrine-induced vasoconstriction of isolated mesenteric arteries compared with that observed under control conditions. These studies indicate hybrid ester AI/NO donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

7.
A group of racemic 4-aryl(heteroaryl)-1,4-dihydro-2,6-dimethyl-3-nitropyridines possessing nitric oxide donor O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino, or 4-ethylpiperazin-1-yl)diazen-1-ium-1,2-diolate, C-5 ester substituents were synthesized by coupling the respective 4-aryl(heteroaryl)-1,4-dihydro-2,6-dimethyl-3-nitropyridine-5-carboxylic acids with either O(2)-acetoxymethyl-1-[N-(2-methylsulfonyloxyethyl)-N-methylamino]diazen-1-ium-1,2-diolate, or O(2)-acetoxymethyl-1-[4-(2-methylsulfonyloxyethyl)piperazin-1-yl]diazen-1-ium-1,2-diolate. Compounds having a C-4 2-pyridyl, 4-pyridyl, 2-trifluoromethylphenyl, or benzofurazan-4-yl substituent exhibited more potent smooth muscle calcium channel antagonist activity (IC(50)'s in the 0.37-1.09 microM range) than related analogs having a C-4 3-pyridyl substituent (IC(50)'s=3.03-9.14 microM range) relative to the reference drug nifedipine (IC(50)=9.13 nM). The point of attachment of C-4 isomeric pyridyl substituents was a determinant of smooth muscle calcium channel antagonist activity where the relative potency profile was 4-pyridyl>2-pyridyl>3-pyridyl. Replacement of the C-5 methyl ester substituent of methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate (Bay K 8644) by an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate, or O(2)-acetoxymethyl-1-(4-ethylpiperazin-1-yl)diazen-1-ium-1,2-diolate, C-5 ester substituent provided compounds, which exhibited a lower, yet respectable, cardiac positive inotropic effect (IC(50)'s=4.82 and 4.05 microM, respectively) relative to the reference drug Bay K 8644 (IC(50)=0.30 microM). All compounds released nitric oxide upon incubation with either phosphate buffer at pH7, or porcine liver esterase. However, the percentage nitric oxide released was up to 3-fold higher (76%) when these O(2)-acetoxymethyl-1-(alkylamino)diazen-1-ium-1,2-diolates were incubated with guinea pig serum. These results suggest that *NO would be released in vivo, upon cleavage by nonspecific serum esterases, preferentially in the vascular endothelium where it may enhance smooth muscle calcium channel antagonist activity.  相似文献   

8.
A group of racemic 3-isopropyl 5-[(2-piperazin-1-yl)ethyl] 1,4-dihydro-2,6-dimethyl-4-(pyridyl)-3,5-pyridinedicarboxylates (12a-c), 3-isopropyl 5-{2-[4-nitrosopiperazinyl]ethyl} 1,4-dihydro-2,6-dimethyl-4-(pyridyl)-3,5-pyridinedicarboxylates (14a-c) and 3-isopropyl 5-{2-[(O(2)-acetoxymethyldiazen-1-ium-1,2-diolate)(N,N-dialkylamino or 4-piperazin-1-yl)]ethyl} 1,4-dihydro-2,6-dimethyl-4-(pyridyl)-3,5-pyridinedicarboxylates (22-30) were prepared using modified Hantzsch reactions. This group of compounds (12a-c, 14a-c, and 22-30) exhibited less potent calcium channel antagonist activity (IC(50)=0.11 to 3.35muM range) than the reference drug nifedipine (IC(50)=0.01 microM). The point of attachment of the isomeric C-4 substituent was a determinant of calcium channel antagonist activity providing the potency profile 2-pyridyl3-pyridyl4-pyridyl. The N-nitrosopiperazinyl compounds (14a-c) did not release nitric oxide. The prodrugs 22-30 that have a C-5 2-[(O(2)-acetoxymethyldiazen-1-ium-1,2-diolate)(N,N-dialkylamino or 4-piperazin-1-yl)]ethyl ester substituent, upon incubation with guinea pig serum, undergo consecutive cleavage of the O(2)-acetoxymethyl moiety to give a nitric oxide donor diazenium-1-ium-1,2-diolate species that subsequently releases nitric oxide. The extent of nitric oxide released from the diazen-1-ium-1,2-diolate group is dependent upon the nature of the amino functionality attached directly to the diazen-1-ium N-1 position where the nitric oxide release profile is 1,4-piperazinyl>N-Et>N-(n-Bu)>N-Me upon exposure to guinea pig serum esterase(s). The results from this study suggest this class of hybrid calcium channel antagonist/nitric oxide donor prodrugs should release the vasodilator nitric oxide in vivo, preferentially in the vascular endothelium, to enhance the smooth muscle calcium channel antagonist effect to produce a combined synergistic antihypertensive effect.  相似文献   

9.
Endogenously generated nitric oxide (NO) mediates a host of important physiological functions, playing roles in the vascular, immunological, and neurological systems. As a result, exogenous agents that release NO have become important therapeutic interventions and research tools. O(2)-Vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/NO) is a prodrug designed with the hypothesis that it might release nitric oxide via epoxidation of the vinyl group by cytochrome P450, followed by enzymatic and/or spontaneous epoxide hydration to release the ultimate NO-donating moiety, 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (PYRRO/NO) ion. In this study, we investigated this hypothetical activation mechanism quantitatively for V-PYRRO/NO using cDNA-expressed human cytochrome P450 (CYP)2E1. Incubation with CYP2E1 and an NADPH-regenerating system resulted in a time-dependent decomposition of V-PYRRO/NO, with a turnover rate of 2.0 nmol/min/pmol CYP2E1. Nitrate and nitrite were detected in high yield as metabolites of NO. The predicted organic metabolites pyrrolidine and glycolaldehyde were also detected in near-quantitative yields. The enzymatic decomposition of V-PYRRO/NO was also catalyzed, albeit at lower rates, by CYP2A6 and CYP2B6. We conclude that the initial step in the metabolism of V-PYRRO/NO to NO in the liver is catalyzed efficiently but not exclusively by the alcohol-inducible form of cytochrome P450 (CYP2E1). The results confirm the proposed activation mechanism involving enzymatic oxidation of the vinyl group in V-PYRRO/NO followed by epoxide hydration and hydrolytic decomposition of the resulting PYRRO/NO ion to generate nitric oxide.  相似文献   

10.
A new class of anti-inflammatory (AI) cupferron prodrugs was synthesized wherein a diazen-1-ium-1,2-diolato ammonium salt, and its O2-methyl and O2-acetoxyethyl derivatives, nitric oxide (NO) donor moieties were attached directly to an aryl carbon on a celecoxib template. The percentage of NO released from the O2-methyl and O2-acetoxyethyl compounds was higher (18.0–37.8% of the theoretical maximal release of one molecule of NO/molecule of the parent compound) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer saline (PBS) at pH 7.4 (3.8–11.6% range). All compounds exhibited weak inhibition of the COX-1 isozyme (IC50 = 5.8–17.0 μM range) in conjunction with weak or modest inhibition of the COX-2 isozyme (IC50 = 1.6–14.4 μM range). The most potent AI agent 5-[4-(O2-ammonium diazen-1-ium-1,2-diolato)phenyl]-1-(4-sulfamoylphenyl)-3-trifluoromethyl-1H-pyrazole exhibited a potency that was about fourfold and twofold greater than that observed for the respective reference drugs aspirin and ibuprofen. These studies indicate that use of a cupferron template constitutes a plausible drug design approach targeted toward the development of AI drugs that do not cause gastric irritation, or elevate blood pressure and induce platelet aggregation that have been associated with the use of some selective COX-2 inhibitors.  相似文献   

11.
A group of 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (12af) was synthesized and evaluated as anti-inflammatory agents. While all the compounds (20 mg/kg) showed significant anti-inflammatory activity after 3 h of inflammation induction (69–89%) as compared to celecoxib (80%), 1-(4-methanesulfonylphenyl)-5-(4-methylaminomethylphenyl)-3-trifluoromethyl-1H-pyrazole (12a) was found to be the most effective one (89%). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 1-(4-methanesulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (10af) requires further investigation since the reaction of N-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)ethanamine (12b) or 1-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)piperazine (12c) with nitric oxide furnished N-nitroso derivatives (13 and 14), respectively, rather than the desired N-diazen-1-ium-1,2-diolate derivatives (10b and 10c).  相似文献   

12.
Nitric oxide (NO) prodrugs such as O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) are a growing class of promising NO-based therapeutics. Nitric oxide release from the anti-cancer lead compound, JS-K, is proposed to occur through a nucleophilic aromatic substitution by glutathione (GSH) catalyzed by glutathione S-transferase (GST) to form a diazeniumdiolate anion that spontaneously releases NO. In this study, a number of structural analogues of JS-K were synthesized and their chemical and biological properties were compared with those of JS-K. The homopiperazine analogue of JS-K showed anti-cancer activity that is comparable with that of JS-K but with a diminished reactivity towards both GSH and GSH/GST; both the aforementioned compounds displayed no cytotoxic activity towards normal renal epithelial cell line at concentrations where they significantly diminished the proliferation of a panel of renal cancer cell lines. These properties may prove advantageous in the further development of this class of nitric oxide prodrugs as cancer therapeutic agents.  相似文献   

13.
A group of (E)-3-(4-methanesulfonylphenyl)acrylic acids possessing a substituted-phenyl ring (4-H, 4-Br, 3-Br, 4-F, 4-OH, 4-OMe, 4-OAc, and 4-NHAc) attached to the acrylic acid C-2 position were prepared using a stereospecific Perkin condensation reaction. A related group of compounds having 4- and 3-(4-isopropyloxyphenyl)phenyl, 4- and 3-(2,4-difluorophenyl)phenyl and 4- and 3-(4-methanesulfonylphenyl)phenyl substituents attached to the acrylic acid C-2 position were also synthesized, using a palladium-catalyzed Suzuki cross-coupling reaction, for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. (E)-2-(3-Bromophenyl)-3-(4-methanesulfonylphenyl)acrylic acid (9h), and compounds having 4-(4-isopropyloxyphenyl-, 2,4-difluorophenyl-, or 4-methylsulfonylphenyl)phenyl moieties at the acrylic acid C-2 position (11a,b,d), were particularly potent COX-2 inhibitors with a high COX-2 selectivity index (COX-2 IC50 approximately 0.32 microM, SI > 316) similar to the reference drug rofecoxib (COX-2 IC50 = 0.5 microM, SI > 200). Acrylic acid analogs with a C-2 4-hydoxyphenyl (9d, IC50 = 0.56 microM), or 4-acetamidophenyl (9g, IC50 = 0.11 microM), substituent were particularly potent 5-LOX inhibitors that may participate in an additional specific hydrogen-bonding interaction. A number of compounds possessing a C-2 substituted-phenyl moiety (4-Br, 4-F, and 4-OH), or a 4- or 3-(2,4-difluorophenyl)phenyl moiety, showed potent 15-LOX inhibitory activity (IC50 values in the 0.31-0.49 microM range) relative to the reference drug luteolin (IC50 = 3.2 microM). Compounds having a C-2 4-acetylaminophenyl, or 4-(2,4-difluorophenyl)phenyl, moiety exhibited anti-inflammatory activities that were equipotent to aspirin, but less than that of celecoxib. The structure-activity data acquired indicate the acrylic acid moiety constitutes a suitable scaffold (template) to design novel acyclic dual inhibitors of the COX and LOX isozymes.  相似文献   

14.
Diazeniumdiolate anions and their prodrug forms are reliable sources of nitric oxide (NO) that have generated interest as promising therapeutic agents. A number of structural analogues of O(2)-(2,4-dinitro-5-(4-(N-methylamino)benzoyloxy)phenyl) 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO), an anti-cancer lead compound that is designed to release NO upon activation by glutathione, were prepared. The nitric oxide release patterns of these O(2)-(2,4-dinitrophenyl) diazeniumdiolates in the presence of glutathione were tested and it was found that in the absence of competing pathways, these compounds release nearly quantitative amounts of NO. The ability of PABA/NO and its structural analogues to inhibit human leukemia cell proliferation was determined and it was found that compounds releasing elevated amounts of NO displayed superior cytotoxic effects.  相似文献   

15.
Arsenic is a cancer chemotherapeutic but hepatotoxicity can be a limiting side effect. O2-vinyl 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (V-PROLI/NO) is a nitric oxide (NO) donor prodrug and metabolized by liver cytochromes P450 (CYP450) to release NO. The effects of V-PROLI/NO pretreatment on the toxicity of arsenic (as NaAsO2) were studied in a rat liver cell line (TRL 1215). The cells acted upon the prodrug to release NO, as assessed by nitrite levels, in a time-dependent fashion to maximal levels of 8-fold above basal levels. Pretreatment with V-PROLI/NO markedly reduced arsenic cytolethality which was directly related to the level of NO produced by V-PROLI/NO treatment. Cyp1a1 expression was directly related to the level of NO production and to reduced arsenic cytotoxicity. V-PROLI/NO pretreatment markedly reduced arsenic-induced apoptosis and suppressed phosphorylation of JNK1/2. V-PROLI/NO pretreatment facilitated additional increases in arsenic-induced metallothionein, a metal-binding protein important in arsenic tolerance. Thus, V-PROLI/NO protects against arsenic toxicity in rat liver cells, reducing cytolethality, apoptosis and dysregulation of MAPKs, through generation of NO formed after metabolism by liver cell enzymes, possibly including Cyp1a1. CYP450 required for NO production from V-PROLI/NO treatment in the rat and human appears to differ as we have previously studied the ability of V-PROLI/NO to prevent arsenic toxicity in human liver cells where it reduced toxicity apparently through a CYP2E1-mediated metabolic mechanism. None-the-less, it appears that both rat and human liver cells act upon V-PROLI/NO via a CYP450-related mechanism to produce NO and subsequently reduce arsenic toxicity.  相似文献   

16.
A group of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines possessing a variety of substituents (Me, CO2Et, H, N=O) attached to the 1,2,3,6-tetrahydropyridyl N(1)-nitrogen atom were synthesized and evaluated as anti-inflammatory agents. Structure-activity relationship data showed that the N-methyl-1,2,3,6-tetrahydropyridyl moiety is a suitable bioisosteric replacement for the tolyl moiety in celecoxib. The most potent compound 4-[5-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)-3-trifluoromethylpyrazol-1-yl]benzenesulfonamide (ED(50)=61.2 mg/kg po) exhibited an anti-inflammatory activity between that of the reference drugs celecoxib (ED(50)=10.8 mg/kg po) and aspirin (ED(50)=128.7 mg/kg po). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines requires further investigation since the reaction of 1,2,3,6-tetrahydropyridines with nitric oxide furnished the undesired N-nitroso-1,2,3,6-tetrahydrohydropyridyl product rather than the desired N-diazen-1-ium-1,2-diolate-1,2,3,6-tetrahydropyridyl product.  相似文献   

17.
A novel group of O2-acetoxymethyl-protected diazeniumdiolate-based non-steroidal anti-inflammatory prodrugs (NONO-NSAIDs) were synthesized by esterifying the carboxylate group of aspirin, ibuprofen, or indomethacin with O2-acetoxymethyl 1-[N-(2-hydroxyethyl)-N-methylamino]diazeniumdiolate. The resulting nitric oxide (*NO)-releasing prodrugs (7-9) did not exhibit in vitro cyclooxygenase (COX) inhibitory activity against the COX-1 and COX-2 isozymes (IC50s>100 microM). In contrast, prodrugs 7 and 8 significantly decreased carrageenan-induced rat paw edema showing enhanced in vivo anti-inflammatory activities (ID50's=552 and 174 micromol/kg, respectively) relative to those of the parent NSAIDs aspirin (ID50=714 micromol/kg) and ibuprofen (ID50=326 micromol/kg). The rate of porcine liver esterase-mediated *NO release from prodrugs 7-9 (2 mol of *NO/mol of test compound in 0.6-6.5 min) was substantially higher compared to that observed without enzymatic catalysis (about 1 mol of *NO/mol of test compound in 40-48 h). These incubation studies suggest that both *NO and the parent NSAID would be released upon in vivo activation (hydrolysis) by esterases. Data acquired in an in vivo ulcer index (UI) assay showed that NONO-aspirin (UI=0.8), NONO-indomethacin (UI=1.3), and particularly NONO-ibuprofen (UI=0) were significantly less ulcerogenic compared to the parent drugs aspirin (UI=57), ibuprofen (UI=46) or indomethacin (UI=34) at equimolar doses. The release of aspirin and *NO from the NONO-aspirin (7) prodrug constitutes a potentially beneficial property for the prophylactic prevention of thrombus formation and adverse cardiovascular events such as stroke and myocardial infarction.  相似文献   

18.
Due to the involvement of nitric oxide (NO) in numerous and diverse physiological processes, site-directed delivery of therapeutic NO in order to minimize unwanted side-effects is necessary. O2-(4-Nitrobenzyl) diazeniumdiolates are designed as substrates for Escherichia coli nitroreductase (NTR), an enzyme that is frequently used to facilitate directed delivery of cytotoxic species to cancers. O2-(4-Nitrobenzyl) diazeniumdiolates are found to be stable in aqueous buffer but are metabolized by NTR to produce NO. A cell viability assay revealed that cytotoxic effects of O2-(4-nitrobenzyl)1-(2-methylpiperidin-1-yl)diazen-1-ium-1,2-diolate (4b) towards two cancer cell lines is significantly enhanced in the presence of NTR suggesting the potential for use of this compound in nitric oxide-based directed prodrug therapy.  相似文献   

19.
Novel hybrid compounds combining the antifungal drug ketoconazole with a diazen-1-ium-1,2-diolate or an organic nitrate moiety and the corresponding NO-donors without ketoconazole were synthesized and their activities against a broad variety of fungal strains were tested. Hybridization modifies the spectrum of antimicrobial activities and generally, the ketoconazole-NO-donor hybrids are more potent than ketoconazole. The NO-donors alone show insufficient effectiveness.  相似文献   

20.
A group of 1-(aminosulfonylphenyl and methylsulfonylphenyl)-2-(pyridyl)acetylene regioisomers were designed such that a COX-2 SO2NH2 pharmacophore was located at the para-position of the phenyl ring, or a SO2Me pharmacophore was placed at the ortho-, meta- or para-position of the phenyl ring, on an acetylene template (scaffold). The point of attachment of the pyridyl ring to the acetylene linker was simultaneously varied (2-pyridyl, 3-pyridyl, 4-pyridyl, 3-methyl-2-pyridyl) to determine the combined effects of positional, steric, and electronic substituent properties upon COX-1 and COX-2 inhibitory potency and COX isozyme selectivity. These target linear 1-(phenyl)-2-(pyridyl)acetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. Structure-activity relationship (SAR) data (IC50 values) acquired by determination of the in vitro ability of the title compounds to inhibit the COX-1 and COX-2 isozymes showed that the position of the COX-2 SO2NH2 or SO2Me pharmacophore on the phenyl ring, and the point of attachment of the pyridyl ring to the acetylene linker, were either individual, or collective, determinants of COX-2 inhibitory potency and selectivity. A number of compounds discovered in this study, particularly 1-(4-aminosulfonylphenyl)-2-(3-methyl-2-pyridyl)acetylene (22), 1-(3-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (27), 1-(3-methanesulfonylphenyl)-2-(4-pyridyl)acetylene (29), 1-(4-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (30), and 1-(4-methanesulfonylphenyl)-2-(3-pyridyl)acetylene (31), exhibit potent (IC50 = 0.04-0.33 microM range) and selective (SI = 18 to >312 range) COX-2 inhibitory activities, that compare favorably with the reference drug celecoxib (COX-2 IC50 = 0.07 microM; COX-2 SI = 473). The sulfonamide (22), and methylsulfonyl (27 and 31), compounds exhibited anti-inflammatory activities (ID50 = 59.9-76.6 mg/kg range) that were intermediate in potency between the reference drugs aspirin (ID50 = 128.7 mg/kg) and celecoxib (ID50 = 10.8 mg/kg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号