首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Serine sulphhydrase from chicken liver and cysteine lyase from chicken-embryo yolk sac catalyse the exchange of alpha-H atoms of the amino acid substrate with 3-H-2O. The degree of labelling of the unreacted substrate approaches a maximum of one atom per mol of amino acid. In the absence of replacing agent there is practically no H-exchange in the substrate. The alpha-H of the accumulating beta-substitution product is completely replaced by the labelled hydrogen of the solvent water, irrespective of the duration of incubation. The amount of labelled alpha-hydrogen incorporated into excess (unreacted) amino acids substrate within 3.5-h incubation is somewhat less than the amount incorporated into the product of the complete enzymic beta-replacement reaction. Within the sensitivity limits of detection, the enzymes do not induce any isotopic exchange either of b-H atoms in the amino substrate or of 18-O-labelled beta-HO groups, in the case of L-serine. Neither serine sulphhydrase nor cysteine lyase will catalyse alpha-hydrogen exchange in close structural analogues of their substrates, e.g. L-alanine, D-serine, threonin, 3-phosphoserine. A special case is the interaction of cysteine lyase with the competitive inhibitor, L-serine (whose inhibitor constant, K-i, is equal to the Michaelis constant, K-m, of L-cysteine): the lyase catalyses, only in presence of a cosubstrate thiol, alpha-H exchange in L-serine at approximately the same rate as in L-cysteine. The present data concerning isotopic alpha-H exchange in substrate amino acids, and evidence published earlier, suggest that the catalytic mechanism of replacement-specific beta-lyases may significantly differ from that of the eliminating or ambivalent (mixed-function) lyases. Formation of alpha, beta-unsaturated pyridoxylidene aldimines as real reaction intermediates is unlikely in the case of lyases specifically catalysing beta-replacement reactions; these may proceed by some alternative mechanism of the type suggested in this paper.  相似文献   

2.
J Ray  S W Englander 《Biochemistry》1986,25(10):3000-3007
Allosteric structure change in human hemoglobin was studied by hydrogen-tritium-exchange methods. The functional labeling method used takes advantage of the change in H-exchange rate at allosterically involved sites to selectively label, with tritium, H-exchange sites that are fast in one protein state and slow in another. The position of the labeled sites can then be located by the medium-resolution fragmentation-separation method. These methods reveal 5 allosterically sensitive, H-bonded, peptide NH's within the first 12 residues of the alpha chain. All five exchange with solvent protons at similar rates in deoxyhemoglobin (T form), and all shift to a new rate, about 30-fold faster, in the liganded protein (R) form. This indicates a decrease in structural stability at the alpha-chain N-terminus in going from the T to the R form, consistent with the loss of stabilizing interactions in that segment. The results indicate a loss of perhaps 2 kcal/mol in stabilization free energy and thus document a significant role for changes at the alpha-chain N-terminus in the allosteric transition.  相似文献   

3.
We describe a technique for monitoring the kinetics of sickle cell hemoglobin gelation by observing the change in the amplitude and linewidth of the water proton magnetic resonance. The resulting kinetic progress curves are very similar to those obtained by optical birefringence and turbidity methods. The curves consist of a delay, followed by a rapidly accelerating signal change which terminates quickly. From a study of the temperature dependence of the delay time, it is shown that all three techniques see the onset of gelation simultaneously. The origin of the change in physical properties upon gelation is briefly discussed in relation to the component steps of the reaction.  相似文献   

4.
Hydrogen-deuterium exchange reactions catalysed by nitrogenase.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

5.
We have developed a photolytic method to determine the concentration of reactive hemes in a solution in the presence of a trace amount of CO. By measurement of the bimolecular rate of CO binding, and by calibration of the rate constant under equivalent conditions, the concentration of the reactive hemes can be determined. In a solution of sickle hemoglobin, the molecules in the gel contribute negligibly to the recombination rate, allowing the concentration of the molecules in the solution phase to be determined. To optimize signal to noise, modulated excitation methods were employed, although the method could also be used with pulse techniques and suitable signal averaging. Because the optical method employs a microspectrophotometer, only a few microliters of concentrated Hb solution is required to reproduce the entire temperature dependence of the solubility previously determined by centrifugation using milliliter quantities of solutions of the same concentration. This should be especially useful for studies of site-directed mutants, and we present results obtained on one such HbS in which Leu 88 beta has been replaced by Ala. The free energy difference in the polymerization of the Leu 88 beta double mutant is consistent with known differences in the amino acid hydrophobicities. The calibration required for these experiments also provides an excellent determination of the activation energy for binding the first CO to deoxy Hb.  相似文献   

6.
N Esaki  T Nakayama  S Sawada  H Tanaka  K Soda 《Biochemistry》1985,24(15):3857-3862
Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the following straight-chain L-amino acids which are not susceptible to elimination: norleucine, norvaline, alpha-aminobutyrate, and alanine. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. One beta-hydrogen of S-methyl-L-cysteine was exchanged faster than the other, although both the beta-hydrogens were exchanged completely with deuterium ultimately. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically. None of the following amino acids were susceptible to the enzymatic hydrogen exchange: D isomers of the above amino acids, branched chain L-amino acids, acidic L-amino acids, and basic L-amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Two main types of conformational fluctuations--local and global are characteristic of the native protein structure and revealed by hydrogen exchange. The probability of those fluctuations changes to a different extent upon hemoglobin oxygenation, changing of pH, splitting of the intersubunit contacts. To compare with the influence of the heme removal the rate of the H-D exchange of the peptide NH atoms of the human apoHb was studied at the pH range 5.5-9.0 and temperature 10-38 degrees C by the IR spectroscopy. The removal of the heme increases the rate of the H-D exchange of the 80% peptide NH atoms with the factor retardation of the exchange rate (P) in the range approximately 10(2)-10(8). For the most of the peptide NH atoms the probability of the local fluctuations weakly depends on the temperature, the enthalpy changes upon all such local conformational transitions deltaH(op) degrees are 0-15 kcal/M. Characterized by the stronger temperature dependence the global fluctuations are not arised upon the temperature increases up to 38 degrees C at pH 7.0 inspite of in these conditions the slow denaturation and aggregation of apoHb begin to occur. Upon the destabilization of the apoHb structure by the simultaneous decreasing of pH to 5.5 and temperature to 10 degrees C the global fluctuations of the apoHb native structure described by deltaH(op)o < 0 begin to intensify. The mechanism of the overall intensification of the local fluctuations upon the heme removal, the peculiarity of the heat denaturation of apoHb in conditions, close to that existing upon the selfassembly of Hb in vivo, and analogy between low temperature global fluctuations and cold denaturation of globular proteins are discussed.  相似文献   

8.
IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in isolated α and β subunits of human hemoglobin (Hb) at pH 5.5–9.0 and 20°C. The H-D exchange occurs by the EX2 mechanism. The retardation factor of subunit exchange rate (P) is in a range of approximately 102–107. Compared to tetrameric Hb, the probability of local fluctuations (1/P) increases to a slightly greater extent in monomeric α subunits than in tetrameric β subunits. Unlike in the whole Hb molecule, oxygenation of its subunits has no effect on the probability of local fluctuations, and the subunits show no pH-dependent changes in 1/P values (observed for liganded Hb). Probable mechanisms accounting for overall intensification of local fluctuations upon the cleavage of contacts between subunits of the tetrameric Hb molecule are discussed with regard to structural crystallographic data.  相似文献   

9.
Two main types of conformational fluctuations, local and global, are characteristic of the native protein structure and are detectable by hydrogen exchange. The probability of such fluctuations changes to a different degree during hemoglobin (Hb) oxygenation, changes in pH, and splitting of the intersubunit contracts. For comparison with the effect of heme removal, the rate of the hydrogen-deuterium (H-D) exchange of peptide H atoms (PHs) of human apoHb was studied by IR spectroscopy at pH 5.5–9.0 and temperatures of 10–38°C. The removal of heme increased the H-D exchange rate for 80% of Hb PHs with the exchange retardation factor P ~ 102-108. For the majority of PHs, the probability of local fluctuations depended weakly on the temperature; changes in enthalpy upon such local conformational transitions were ΔH op o = 0–15 kcal/M. Global fluctuations, displaying a stronger temperature dependence, did not arise with an increase in temperature to 38°C at pH 7.0, although apoHb began slowly denaturing and aggregating under these conditions. Destabilization of the apoHb structure with a concurrent decrease in pH to 5.5 and temperature to 10°C intensified global fluctuations in the native protein structure with ΔH op o < 0. The mechanism underlying the overall intensification of local fluctuations upon the heme removal, the specific features of apoHb heat denaturation under conditions close to those of in vivo Hb self-assembly, and the analogies between low-temperature global fluctuations and cold denaturation of globular proteins are discussed.  相似文献   

10.
Folding of lysozyme at pH 5.2 is a complex processes. After rapid collapse (<1 ms) kinetic partitioning into a slow and fast folding pathway occurs. The fast pathway leads directly to the native structure (N), whereas the slow pathway goes through a partially folded intermediate (I(1)) with native-like secondary structure in the alpha-domain. This mechanism is in agreement with data from a large number of spectroscopic probes, from changes in the radius of gyration and from measurements on the time-course of the populations of the different species. Results from pulsed hydrogen exchange experiments, in contrast, revealed that the secondary structure of I(1) and of N is formed significantly faster than changes in spectroscopic properties occur and showed large variations in the protection kinetics of individual amide sites. We investigated the molecular origin of the rapid amide protection by quantitatively simulating all kinetic processes during the pulse-labeling experiments. Absorbance and fluorescence-detected folding kinetics showed that the early events in lysozyme folding are accelerated under exchange conditions (pH 9.2) and that a change in folding mechanism occurs due to the transient population of an additional intermediate (I(2)). This leads to kinetic competition between exchange and folding during the exchange pulse and to incomplete labeling of amide sites with slow intrinsic exchange rates. As a result, apparently faster and non-exponential kinetics of amide protection are measured in the labeling experiments. Our results further suggest that collapsed lysozyme (C) and I(1) have five and ten-times reduced free exchange rates, respectively, due to limited solvent accessibility.  相似文献   

11.
The rate of the H-D exchange of the peptide NH atoms of the isolated alpha and beta subunits of human Hb were studied at the pH range 5.5-9.0 and 20 degrees C by the IR spectroscopy. The factor retardation of the exchange rate of subunits -P in the range -10(2)-10(7). In comparison with tetramer Hb the probability of local fluctuations (1/P) is increased to a slightly greater extent for the monomeric alpha subunits then for the tetramer beta subunits. Unlike Hb oxygenation of subunits does not influence on the probability of the local fluctuations and subunits have no the pH-dependent change of the value 1/P observable for the ligand Hb. The possible mechanisms of the overall intensification of the local fluctuations upon the splitting of the Hb tetrameric contacts between subunits are discussed with the inviting of the structural crystallographic data.  相似文献   

12.
13.
The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site.  相似文献   

14.
The magnetic relaxation dispersion profiles for formate, acetate, and water protons are reported for aqueous solutions of hemoglobin singly and doubly labeled with a nitroxide and mercury(II) ion at cysteines at beta-93. Using two spin labels, one nuclear and one electron spin, a long intramolecular vector is defined between the two beta-93 positions in the protein. The paramagnetic contributions to the observed 1H spin-lattice relaxation rate constant are isolated from the magnetic relaxation dispersion profiles obtained on a dual-magnet apparatus that provides spectral density functions characterizing fluctuations sensed by intermoment dipolar interactions in the time range from the tens of microseconds to approximately 1 ps. Both formate and acetate ions are found to bind specifically within 5 angstroms of the beta-93 spin-label position and the relaxation dispersion has inflection points corresponding to correlation times of 30 ps and 4 ns for both ions. The 4-ns motion is identified with exchange of the anions from the site, whereas the 30-ps correlation time is identified with relative motions of the spin label and the bound anion in the protein environment close to beta-93. The magnetic field dependence of the paramagnetic contributions in both cases is well described by a simple Lorentzian spectral density function; no peaks in the spectral density function are observed. Therefore, the high frequency motions of the protein monitored by the intramolecular vector defined by the electron and nuclear spin are well characterized by a stationary random function of time. Attempts to examine long vector fluctuations by employing electron spin and nuclear spin double-labeling techniques did not yield unambiguous characterization of the high frequency motions of the vector between beta-93 positions on different chains.  相似文献   

15.
Mazon H  Marcillat O  Forest E  Vial C 《Biochimie》2005,87(12):1101-1110
Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).  相似文献   

16.
We have measured the forward and reverse rates of the allosteric transition of hemoglobin A with three CO molecules bound by using modulated excitation coupled with fluorescence quenching of the DPG analogue, PTS (8-hydroxy-1,3,6 pyrene trisulfonic acid). This dye is observed to bind to the T state with significantly larger affinity than to the R state, and thus provides an unequivocal marker for the molecule's conformational change. The allosteric rates obtained with the fluorescent dye (pH 7.0, bis-Tris buffer) are (3.4 +/- 1.0) x 10(3)s-1 for the R to T transition and (2.1 +/- 0.5) x 10(4)s-1 for the T to R transition. This gives an equilibrium constant L3 of 0.16 +/- 0.06. These results provide good agreement with modulated difference spectra calibrated from model compounds, arguing that there is little if any difference in the kinetics observed by the heme spectra and the kinetics of the full subunit motion. The equilibrium constant between structures (L3) is smaller in the absence of phosphates than observed in phosphate buffer (0.33). However, the rates of the allosteric transition increase in the absence of phosphates as compared with the corresponding rates in phosphate buffer of 1.0 x 10(3)s-1 and 3.0 x 10(3)s-1. The effects of inorganic phosphates on the equilibrium can be separated from the effects on kinetics. We find that phosphates also affect the dynamic behavior of hemoglobin, and the presence of 0.15 M phosphate can be viewed as raising the transition state energy between R and T conformations by approximately 0.5 kcal/mol exclusive of the T state stabilization. Dissociation constants for the dye were measured to be 104 +/- 25 microM for unligated T state and 930 +/- 300 microM for the fully ligated R state. The best fit equilibrium constant (125 +/- 40 microM) for three ligands bound does not differ significantly from that measured without ligands bound. Incidental to the measurement technique is the determination of the rates of binding and release of the dye. The association rate for binding to the T state is large, (at least 4 x 10(9) M-1 s-1) and may be diffusion limited, while the association and dissociation rates for R state binding, while not determined with precision, are clearly much smaller, of the scale of 10(5) M-1 s-1 for association.  相似文献   

17.
The rate of the H-D exchange of the peptide NH atoms of the different forms of human Hb was studied at the range of pH 5-10 and temperature 10-63 degrees C by the IR spectroscopy. The pH-dependence of the H-D exchange rate is accordance with the EX2 mechanism. Two pH-dependent conformers of ligand forms of Hb existes at 10-30 degrees C with lower probability of local fluctuations of the alkaline conformer. The difference between two conformers vanishes at 40 degrees C with the appearance of the third conformer with higher probability of local fluctuations. The deoxyHb at 20 degrees C and pH range 6-9 has no pH-dependent conformers and the probability of local fluctuations is considerably reduced in comparison to the acid conformer of ligand Hb. Upon the destabilization of the ligand Hb structure by the pH decreasing to 5.0 at 20 degrees C or the temperature increasing up to 50-60 degrees C at pH 7.1 the global fluctuations of the native structure are intensified providing the H-D exchange of the slowest exchanging NH atoms. The nature of the local and global fluctuations and possible similarity between the two pH-dependent conformers of ligand Hb and its functional R and R2 states revealed by the X-ray analysis and NMR spectroscopy were discussed.  相似文献   

18.
Amyloid fibrils with an ordered cross-β structure are one form of protein aberrant aggregates. Fibrils themselves and on-pathway small aggregates are involved in many neurodegenerative diseases and amylodoses. Over the past decade, much has been learned about the conformation of amyloid fibrils by using various biochemical and biophysical approaches. Amyloid fibrils accommodate rigid core structures composed of regular intra- and intermolecular non-covalent bonds such as hydrogen bonds, and disordered flexible regions exposed to solvents. In contrast to the improved understanding of fibril structures, few studies have investigated the short-living monomeric intermediates which interact with amyloid fibrils for elongation and the self-associated intermediates in the course of amyloidogenesis at the residue level. To study static fibrillar structures and kinetic intermediates, hydrogen/deuterium exchange (HD(ex)) coupled with solution-state NMR spectroscopy is one of the most powerful methods with a high time and atomic resolution. Here, we review studies on the structural properties of amyloid fibrils based on a combination of dimethylsulfoxide-quenched HD(ex) and NMR spectroscopy. Recent studies on transient kinetic intermediates during fibril growth by means of pulse-labeling HD(ex) aided by a quenched-flow apparatus and NMR spectroscopy are focused on.  相似文献   

19.
I A Rose 《Federation proceedings》1978,37(14):2775-2782
Reversible gamma-PO3 transfer in ATP reactions can be recognized by exchange of 18O from the beta,gamma-bridge position to the beta-P-nonbridge positions: (see article). Such intramolecular exchange is less demanding for the detection of the bond cleavage than the usual ATP:ADP isotope exchange because it does not require dissociation of bound ADP from the intermediate complex. Acyl phosphate intermediates are indicated for the glutamine synthetase and carbamyl-P synthetase reactions by their extreme requirements for glutamate and bicarbonate, respectively, for positional oxygen exchange. No support is given for E-P or concerted mechanisms. No support is found for an active CO2 in the latter reaction, although this is not ruled out by the data. Positional isomerization in ATP occurs with lamellae from spinach chloroplast only in the light. When the ATP molecule interacts, it also undergoes complete exchange of the gamma-PO3 oxygen with water before it rejoins the pool of free ATP. The difference in rates of the two exchanges suggests that the torsional motion of ADP-beta-PO3 is greatly hindered on the enzyme. This may explain, by the argument of substrate activation, the rapid reversibility of the ATPase reaction on the enzyme.  相似文献   

20.
Hydrogen exchange experiments using functional labeling and fragment separation methods were performed to study interactions at the C terminus of the hemoglobin beta subunit that contribute to the phosphate effect and the Bohr effect. The results show that the H-exchange behavior of several peptide NH at the beta chain C terminus is determined by a transient, concerted unfolding reaction involving five or more residues, from the C-terminal His146 beta through at least Ala142 beta, and that H-exchange rate can be used to measure the stabilization free energy of interactions, both individually and collectively, at this locus. In deoxy hemoglobin at pH 7.4 and 0 degrees C, the removal of 2,3-diphosphoglycerate (DPG) or pyrophosphate (loss of a salt to His143 beta) speeds the exchange of the beta chain C-terminal peptide NH protons by 2.5-fold (at high salt), indicating a destabilization of the C-terminal segment by 0.5 kcal of free energy. Loss of the His146 beta 1 to Asp94 beta 1 salt link speeds all these protons by 6.3-fold, indicating a bond stabilization free energy of 1.0 kcal. When both these salt links are removed together, the effect is found to be strictly additive; all the protons exchange faster by 16-fold indicating a loss of 1.5 kcal in stabilization free energy. Added salt is slightly destabilizing when DPG is present but provides some increased stability, in the 0.2 kcal range, when DPG is absent. The total allosteric stabilization energy at each beta chain C terminus in deoxy hemoglobin under these conditions is measured to be 3.8 kcal (pH 7.4, 0 degrees C, with DPG). In oxy hemoglobin at pH 7.4 and 0 degrees C, stability at the beta chain C terminus is essentially independent of salt concentration, and the NES modification, which in deoxy hemoglobin blocks the His146 beta to Asp94 beta salt link, has no destabilizing effect, either at high or low salt. These results appear to show that the His146 beta salt link, which participates importantly in the alkaline Bohr effect, does not reform to Asp94 beta or to any other salt link acceptor in a stable way in oxy hemoglobin at low or high salt conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号