首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex discrimination procedure was used to test class formation with multi-component figures in college students. First, selections of a red-+45 degrees -oriented rectangle (A1B1) instead of a red -45 degrees -oriented rectangle (A1B2) and of a green -45 degrees -oriented rectangle (A2B2) instead of a green-+45 degrees -oriented rectangle (A2B1), were reinforced. Second, selections of a +45 degrees -obtuse-angle-white hexagon (B1C1), instead of a +45 degrees -two-acute-angle hexagon (B1C2) and of a -45 degrees -two-acute-angle hexagon (B2C2), instead of a -45 degrees -obtuse-angle hexagon (B2C1), were reinforced. Subsequent tests with figures A1B1 and A2B1, A2B2 and A1B2, B1C1 and B2C1, and B2C2 and B1C2 demonstrated selection of the same figures as in training. Other tests with a novel figure compounded by color A1 and form C1 and a novel figure compounded by color A1 and form C2, or a novel figure compounded by A2 and C1 and a novel figure compounded by A2 and C2 demonstrated consistent selection of figures A1C1 and A2C2. A final test with figures A1C1 and A2C1, or with figures A2C2 and A1C2 also showed consistent selections of the same figures -A1C1 and A2C2. The resulting classification among selected and non-selected figures cannot be based on particular properties of the selected figures, or in a combination of a particular set of those properties, because both selected and non-selected figures were compounded by identical values. Instead, the participants selected the figures with two values of the same set (A1,B1, or C1, or A2,B2 or C2). Thus, these results demonstrated categorization based on the relations among the values of the figures. Therefore, these results have important implications for the study of concept formation.  相似文献   

2.
The Col2a1 gene is expressed in notochord, otic vesicle, cartilaginous tissue and the anlage of endochondral bone during development in higher vertebrates. Type II collagen, a homotrimeric product of the Col2a1 gene, functions as a key regulatory protein for cartilage development and endochondral ossification. In medaka and zebrafish, a single homolog of the col2a1 gene has been identified. However, it is necessary to note that many genes are duplicated in teleost fishes. To clarify function of col2a1 genes in teleost fishes and to further understand the process of cartilage development and endochondral ossification, we cloned and mapped the gene loci of two col2a1 orthologs in medaka. The proteins encoded by both medaka col2a1a and col2a1b genes were highly conserved (85.3% and 82.6%) relative to human COL2A1, but synteny was not observed. We also examined the expression patterns of col2a1a and col2a1b during embryonic development. Whole-mount insitu hybridization data suggests that expression patterns of both medaka co2a1a and col2a1b genes are similar to that of zebrafish co2a1 in the early embryonic stages. In medaka, the two col2a1 genes show a closely correlated pattern of spatial and temporal expression. In late embryonic stages, however, there were differences in both expression patterns in the pectoral fin. This study is the first report of two homologs of col2a1 in teleosts and also the first examination of col2a1a and col2a1b expression patterns in this group.  相似文献   

3.
4.
We previously reported that hydrogen peroxide (H2O2) mediates mitogen activation of ribosomal protein S6 kinase 1 (S6K1) which plays an important role in cell proliferation and growth. In this study, we investigated a possible role of H2O2 as a molecular linker in Rac1 activation of S6K1. Overexpression of recombinant catalase in NIH-3T3 cells led to the drastic inhibition of H2O2 production by PDGF, which was accompanied by a decrease in S6K1 activity. Similarly, PDGF activation of S6K1 was significantly inhibited by transient transfection or stable transfection of the cells with a dominant-negative Rac1 (Rac1N17), while overexpression of constitutively active Rac1 (Rac1V12) in the cells led to an increase in basal activity of S6K1. In addition, stable transfection of Rat2 cells with Rac1N17 dramatically attenuated the H2O2 production by PDGF as compared with that in the control cells. In contrast, Rat2 cells stably transfected with Rac1V12 produced high level of H2O2 in the absence of PDGF, comparable to that in the control cells stimulated with PDGF. More importantly, elimination of H2O2 produced in Rat2 cells overexpressing Rac1V12 inhibited the Rac1V12 activation of S6K1, indicating the possible role of H2O2 as a mediator in the activation of S6K1 by Rac1. However, H2O2 could be also produced via other pathway, which is independent of Rac1 or PI3K, because in Rat2 cells stably transfected with Rac1N17, H2O2 could be produced by arsenite, which has been shown to be a stimulator of H2O2 production. Taken together, these results suggest that H2O2 plays a pivotal role as a mediator in Rac1 activation of S6K1.  相似文献   

5.
Arslan S 《Biochemical genetics》2010,48(11-12):987-994
Sulfotransferases (SULTs) play a significant role in the biotransformation of a variety of xenobiotics and endogenous compounds. SULTs are genetically polymorphic enzymes; to date, 12 human cytosolic SULT isoforms have been identified. This study investigated SULT1A1 and SULT1A2 gene polymorphism using a PCR-RFLP method (n = 303). The frequency of the SULT1A1*1 allele was 76.2% and SULT1A1*2 was 23.8%. The SULT1A1*3 allele could not be identified. The SULT1A2 frequencies were 69.2% (SULT1A2*1), 18.3% (SULT1A2*2), and 12.5% (SULT1A2*3). The SULT1A1 and SULT1A2 loci were in Hardy-Weinberg equilibrium (SULT1A1 χ2 = 0.58, P = 0.44; SULT1A2 χ2 = 7.28, P = 0.06). Linkage analysis indicated a close linkage between these two genes (χ2 = 5.31, P < 0.01); therefore, the statistical hypothesis that SULT1A1 and SULT1A2 alleles are independently distributed was rejected. Additionally, a strongly positive linkage was detected between SULT1A1*2 and SULT1A2*2 alleles in this population (D' = 0.79, χ2 = 33.33).  相似文献   

6.
Transformer 2β1 (Tra2β1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2β1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2β1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2β3), RS1 blocks phosphorylation of these serines in the full-length Tra2β1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2β1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2β1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis.  相似文献   

7.
Neuroplin-1 (NRP1), a receptor for vascular endothelial growth factor (VEGF) family members, has three distinct extracellular domains, a1a2, b1b2, and c. To determine the VEGF(165) and placenta growth factor 2 (PlGF-2)-binding sites of NRP1, recombinant NRP1 domains were expressed in mammalian cells as Myc-tagged, soluble proteins, and used in co-precipitation experiments with 125I-VEGF165 and 125I-PlGF-2. Anti-Myc antibodies immunoprecipitated 125I-VEGF165 and 125I-PlGF-2 in the presence of the b1b2 but not of the a1a2 and c domains. Neither b1 nor b2 alone was capable of binding 125I-VEGF165. In competition experiments, VEGF165 competed PlGF-2 binding to the NRP1 b1b2 domain, suggesting that the binding sites of VEGF165 and PlGF-2 overlap. The presence of the a1a2 domain greatly enhanced VEGF165, but not PlGF-2 binding to b1b2. Heparin enhanced the binding of both 125I-VEGF165 and 125I-PlGF-2 to the b1b2 domain by 20- and 4-fold, respectively. A heparin chain of at least 20-24 monosaccharides was necessary for binding. In addition, the b1b2 domain of NRP1 could bind heparin directly, requiring heparin oligomers of at least 8 monosaccharide units. It was concluded that an intact b1b2 domain serves as the VEGF165-, PlGF-2-, and heparin-binding sites in NRP1, and that heparin is a critical component for regulating VEGF165 and PlGF-2 interactions with NRP1 by physically interacting with both receptor and ligands.  相似文献   

8.
Mitogen-activated protein kinases (MAPKs) are activated through cascades or modules consisting of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Investigating the molecular basis of activation of the c-Jun N-terminal kinase (JNK) subgroup of MAPK by the MAPKKK MEKK2, we found that strong and specific JNK1 activation by MEKK2 was mediated by the MAPKK JNK kinase 2 (JNKK2) rather than by JNKK1 through formation of a tripartite complex consisting of MEKK2, JNKK2, and JNK1. No scaffold protein was required for the MEKK2-JNKK2-JNK1 tripartite-complex formation. Expression of JNK1, JNKK2, and MEKK2 significantly augmented the coprecipitation of, respectively, MEKK2-JNKK2, MEKK2-JNK1, and JNKK2-JNK1, indicating that the interaction of MEKK2, JNKK2, and JNK1 is synergistic. Finally, the JNK1 was activated more efficiently in the MEKK2-JNKK2-JNK1 complex than was the JNK1 excluded from the complex. Thus, formation of a signaling complex through synergistic interaction of a MAPKKK, a MAPKK, and a MAPK molecule like MEKK2-JNKK2-JNK1 is likely to be responsible for the efficient, specific flow of information via MAPK cascades.  相似文献   

9.
C1r2C1s2 is a subcomponent of first component C1 of the complement cascade. Previously two distinct models for its structure have been described, in which C1r2C1s2 is either a linear rod-like assembly of the globular domains found in each of C1s and C1r, or these domains are arranged to form an asymmetric X-shaped structure. These two models were evaluated by using hydrodynamic simulations and neutron scattering. The data on C1s, C1s2 and C1r are readily represented by straight hydrodynamic cylinders, but not C1r2 or C1r2C1s2. Tests of the X-structure for C1r2 and C1r2C1s2 successfully predicted the experimental sedimentation coefficients, thus supporting this model. Neutron scattering analyses on C1s and C1r2 are consistent with a linear structure for C1s, but not for C1r2. An X-shaped structure for C1r2 was found to give a good account of the neutron data at large scattering angles. The total length of the C1s and C1r monomers was determined as 17-20 nm, which is compatible with electron microscopy. On the basis of the known sequences of C1r and C1s, this length is accounted for by a linear arrangement of a serine-proteinase domain (length 4 nm), two short consensus repeat domains (2 x 4 nm), and a globular entity containing the I, II and III domains (4-7 nm).  相似文献   

10.
Acid-sensing ion channels (ASIC) are ligand-gated cation channels that are highly expressed in peripheral sensory and central neurons. ASIC are transiently activated by decreases in extracellular pH and are thought to play important roles in sensory perception, neuronal transmission, and excitability, and in the pathology of neurological conditions, such as brain ischemia. We demonstrate here that the heavy metals Ni(2+) and Cd(2+) dose-dependently inhibit ASIC currents in hippocampus CA1 neurons and in Chinese hamster ovary (CHO) cells heterologously expressing these channels. The effects of both Ni(2+) and Cd(2+) were voltage-independent, fast, and reversible. Neither metal affected activation and desensitization kinetics but rather decreased pH-sensitivity. Moreover, distinct ASIC isoforms were differentially inhibited by Ni(2+) and Cd(2+). External application of 1 mM Ni(2+) rapidly inhibited homomeric ASIC1a and heteromeric ASIC1a/2a channels without affecting ASIC1b, 2a, and ASIC3 homomeric channels and ASIC1a/3 and 2a/3 heteromeric channels. In contrast, external Cd(+) (1 mM) inhibited ASIC2a and ASIC3 homomeric channels and ASIC1a/2a, 1a/3, and 2a/3 heteromeric channels but not ASIC1a homomeric channels. The acid-sensing current in isolated rat hippocampus CA1 neurons, thought to be carried primarily by ASIC1a and 1a/2a, was inhibited by 1 mM Ni(2+). The current study identifies ASIC as a novel target for the neurotoxic heavy metals Cd(2+) and Ni(2+).  相似文献   

11.
We describe the cloning, functional characterization and tissue localization of a novel membrane transporter of the OATP/Oatp-gene family obtained from liver and kidney of cattle (Bos taurus). The carrier protein exhibits highest sequence identity to the human OATP1A2 (previously called OATP-A) and is, therefore, named bovine Oatp1a2. Bovine Oatp1a2 received the gene symbol Slco1a2 that is identical to the SLC classification of human OATP1A2 (SLCO1A2, previously called SLC21A3) and is likely an orthologue of the human gene. Two different full-length bOatp1a2 cDNAs of 2316-bp and 3504-bp were obtained and encoded for a 666 amino acid membrane protein, which contains twelve putative transmembrane spanning domains. Bovine Oatp1a2 expression was detected in liver, kidney, brain and adrenal gland. Uptake studies in cRNA-injected oocytes demonstrated that bOatp1a2 transports estrone-3-sulfate and taurocholate, with K(m) values of 9.6 microM and 51 microM, respectively, and estradiol-17beta-glucuronide. However, the structurally-related heart glycosides ouabain (1 microM) and digoxin (1 microM) are neither transported by bovine Oatp1a2 nor by human OATP1A2. We conclude that based on the tested substrates bovine Oatp1a2 shows functional homology to human OATP1A2.  相似文献   

12.
We have previously shown that H2b mice with B10 or BALB genetic backgrounds have higher basal levels of IgG2a than H2k and H2d congenic strains and, hence, have low IgG1/IgG2a ratios, which is consistent with a T1 cytokine milieu. The phenotypic marker of the high IgG2a levels, denoted immunoglobulin isotype-1 (Igis1) was provisionally mapped telomeric of IEbeta using MHC recombinant mice. In addition, data from B10.A(2R), B10.A(1R) and B10.A(18R) mice indicated that Igis1 may lie in a 27 kb region between G7b (Sm-X5) and G7c. In the present study we confirm that Igis1 is in the H2 region using BALB and B10 congenic F2 mice. H2bb F2 mice had higher IgG2a levels than the H2dd parental strains. H2bd F1 and F2 mice on the B10 background produced IgG2a levels comparable with the H2bb parental strain, indicating that the b allele was dominant. In contrast, the H2bd F1 and F2 mice on the BALB background produced IgG2a levels between those of the H2bb and H2dd parental strains, indicating codominance of the b and d alleles. This suggests that a background gene influences regulation of IgG2a levels by Igis1. Non-obese diabetic (NOD) mice (KdIAg7IEnu11Db), which can develop type 1 diabetes, had higher levels of IgG2a than NOD-H2d congenic mice. Thus, Igis1 affects isotype selection in the presence of non-MHC diabetes genes. As type 1 diabetes is associated with T1 responses, Igis1 may affect susceptibility to this condition.  相似文献   

13.
A c-Myc epitope-tagged N-methyl-D-aspartate receptor NR1-2a subunit was generated, NR1-2a(c-Myc), where the tag was inserted after amino acid 81. NR1-2a(c-Myc) /NR2A receptors when expressed in mammalian cells are not trafficked to the cell surface nor do they yield cell cytotoxicity post-transfection. NR1-2a(c-Myc) was, however, shown to assemble with NR2A subunits by immunoprecipitation and [(3)H]MK801 radioligand binding assays. Immunoblots of cells co-transfected with wild-type NR1-2a/NR2A subunits yielded two NR1-2a immunoreactive species with molecular masses of 115 and 226 kDa. Two-dimensional electrophoresis under non-reducing and reducing conditions revealed that the 226-kDa band contained disulfide-linked NR1-2a subunits. Only the 115-kDa NR1-2a species was detected for NR1-2a(c-Myc)/NR2A. The c-Myc epitope is inserted adjacent to cysteine 79 of the NR1-2a subunit; therefore, it is possible that the tag may prevent the formation of NR1 disulfide bridges. A series of cysteine --> alanine NR1-2a mutants was generated, and the NR1-2a mutants were co-expressed with NR2A or NR2B subunits in mammalian cells and characterized with respect to cell surface expression, cell cytotoxicity post-transfection, co-association by immunoprecipitation, and immunoblotting following SDS-PAGE under both reducing and non-reducing conditions. When co-expressed with NR2A in mammalian cells, NR1-2a(C79A)/NR2A displayed similar properties to NR1-2a(c-Myc)/NR2A in that the 226-kDa NR1 immunoreactive species was not detectable, and trafficking to the cell surface was impaired compared with wild-type NR1/NR2 receptors. These results provide the first biochemical evidence for the formation of NR1-NR1 intersubunit disulfide-linked homodimers involving cysteine 79. They suggest that disulfide bridging and structural integrity within the NR1 N-terminal domain is requisite for cell surface N-methyl-D-aspartate receptor expression.  相似文献   

14.
The single-stranded DNA binding proteins in mouse shelterin, POT1a and POT1b, accumulate at telomeres as heterodimers with TPP1, which binds TIN2 and thus links the TPP1/POT1 dimers with TRF1 and TRF2/Rap1. When TPP1 is tethered to TIN2/TRF1/TRF2, POT1a is thought to block replication protein A binding to the single-stranded telomeric DNA and prevent ataxia telangiectasia and Rad3-related kinase activation. Similarly, TPP1/POT1b tethered to TIN2 can control the formation of the correct single-stranded telomeric overhang. Consistent with this view, the telomeric phenotypes following deletion of POT1a,b or TPP1 are phenocopied in TIN2-deficient cells. However, the loading of TRF1 and TRF2/Rap1 is additionally compromised in TIN2 KO cells, leading to added phenotypes. Therefore, it could not be excluded that, in addition to TIN2, other components of shelterin contribute to the recruitment of TPP1/POT1a,b as suggested by previous reports. To test whether TIN2 is the sole link between TPP1/POT1a,b and telomeres, we defined the TPP1 interaction domain of TIN2 and generated a TIN2 allele that was unable to interact with TPP1 but retained its interaction with TRF1 and TRF2. We demonstrated that cells expressing TIN2ΔTPP1 instead of wild-type TIN2 phenocopy the POT1a,b knockout setting without showing additional phenotypes. Therefore, these results are consistent with TIN2 being the only mechanism by which TPP1/POT1 heterodimers bind to shelterin and function in telomere protection.  相似文献   

15.
16.
The shelterin protein TIN2 is required for the telomeric accumulation of TPP1/POT1 heterodimers and for the protection of telomeres by the POT1 proteins (POT1a and POT1b in the mouse). TIN2 also binds to TRF1 and TRF2, improving the telomeric localization of TRF2 and its function. Here, we ask whether TIN2 needs to interact with both TRF1 and TRF2 to mediate the telomere protection afforded by TRF2 and POT1a/b. Using a TIN2 allele deficient in TRF1 binding (TIN2-L247E), we demonstrate that TRF1 is required for optimal recruitment of TIN2 to telomeres and document phenotypes associated with the TIN2-L247E allele that are explained by insufficient TIN2 loading onto telomeres. To bypass the requirement for TRF1-dependent recruitment, we fused TIN2-L247E to the TRF2-interacting (RCT) domain of Rap1. The RCT-TIN2-L247E fusion showed improved telomeric localization and was fully functional in terms of chromosome end protection by TRF2, TPP1/POT1a, and TPP1/POT1b. These data indicate that when sufficient TIN2 is loaded onto telomeres, its interaction with TRF1 is not required to mediate the function of TRF2 and the TPP1/POT1 heterodimers. We therefore conclude that shelterin can protect chromosome ends as a TRF2-tethered TIN2/TPP1/POT1 complex that lacks a physical connection to TRF1.  相似文献   

17.
18.
Turkan A  Hiromasa Y  Roche TE 《Biochemistry》2004,43(47):15073-15085
Pyruvate dehydrogenase phosphatase isoform 1 (PDP1) is a heterodimer with a catalytic subunit (PDP1c) and a regulatory subunit (PDP1r). The activities of PDP1 or just PDP1c are greatly increased by Ca(2+)-dependent binding to the L2 (inner lipoyl) domain of the dihydrolipoyl acetyltransferase (E2) core. Using EGTA-Ca buffers, the dependence of PDP1 or PDP1c on the level of free Ca(2+) was evaluated in activity and L2 binding studies. An increase in the Mg(2+) concentration decreased the Ca(2+) concentration required for half-maximal activation of PDP1 from 3 to 1 microM, but this parameter was unchanged at 3 microM with PDP1c. Near 1 microM Ca(2+), tight binding of PDP1 but not PDP1c to gel-anchored L2 required Mg(2+). With just Ca(2+) included, some PDP1c separated from PDP1r and remained more tightly bound to L2 than intact PDP1. Thus, formation of the PDP1c.Ca(2+).L2 complex is supported by micromolar Ca(2+) concentrations and becomes sensitive to the Mg(2+) level when PDP1c is bound to PDP1r. Sedimentation velocity and equilibrium studies revealed that PDP1c exists as a reversible monomer/dimer mixture with an equilibrium dissociation constant of 8.0 +/- 2.5 microM. L2 binds tightly and preferentially to the PDP1c monomer. Approximately 45 PDP1c monomers bind to the E2 60mer with a K(d) of approximately 0.3 microM. Isothermal titration calorimetry and (45)Ca(2+) binding studies failed to detect binding of Ca(2+) (<100 microM) to L2 or PDP1c, alone, but readily detected binding to L2 and PDP1c. Therefore, both proteins are required for formation of a complex with tightly held Ca(2+), and complex formation hinders the tendency of PDP1c to form a dimer.  相似文献   

19.
20.
SJ proteins termed P1, P2, P3 and P4 were found to have molecular weights very close to MAP1 or MAP2. P1 and P2 reacted with an antibody to the combined antigens, MAP1a, MAP1b and MAP1c, but neither one of the peptide maps of P1, P2, nor P3 resembled either one of the maps of MAP1a plus MAP1b, MAP1c, MAP2a or MAP2b. Thus, proteins 1 and 2 were immunologically related to, but structurally different from, MAP1 subspecies. The protein P4 reacted with an antibody to combined MAP2a and MAP2b, and a peptide map of P4 resembled those of MAP2a and MAP2b. Thus, P4 is probably identical to MAP2. P1, P2, P3 and P4 appeared to be concentrated in SJ as compared to synaptosomes or a synaptic plasma membrane fraction, although the contents of these proteins, especially P1 and P4, were small. P2 (MAP1-related protein) was phosphorylated endogenously both in the presence and in the absence of CaC12 plus calmodulin, while the MAP2-related protein P4 in SJ was hardly phosphorylated by the endogenous kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号