首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J-proteins are obligate partners of Hsp70s, forming a ubiquitous class of molecular chaperone machinery. The ribosome-associated Hsp70 of yeast Ssb binds nascent polypeptides as they exit the ribosome. Here we report that the ribosome-associated J-protein Zuo1 is the partner of Ssb. However, Zuo1 efficiently stimulates the ATPase activity of Ssb only when in complex with another Hsp70, Ssz1. Ssz1 binds ATP, but none of the 11 different amino acid substitutions in the ATP-binding cleft affected Ssz1 function in vivo, suggesting that neither nucleotide binding nor hydrolysis is required. We propose that Ssz1's predominant function in the cell is to facilitate Zuo1's ability to function as a J-protein partner of Ssb on the ribosome, serving as an example of an Hsp70 family member that has evolved to carry out functions distinct from that of a chaperone.  相似文献   

2.
Eukaryotic ribosomes carry a stable chaperone complex termed ribosome-associated complex consisting of the J-domain protein Zuo1 and the Hsp70 Ssz1. Zuo1 and Ssz1 together with the Hsp70 homolog Ssb1/2 form a functional triad involved in translation and early polypeptide folding processes. Strains lacking one of these components display slow growth, cold sensitivity, and defects in translational fidelity. Ssz1 diverges from canonical Hsp70s insofar that neither the ability to hydrolyze ATP nor binding to peptide substrates is essential in vivo. The exact role within the chaperone triad and whether or not Ssz1 can hydrolyze ATP has remained unclear. We now find that Ssz1 is not an ATPase in vitro, and even its ability to bind ATP is dispensable in vivo. Furthermore, Ssz1 function was independent of ribosome-associated complex formation, indicating that Ssz1 is not merely a structural scaffold for Zuo1. Finally, Ssz1 function in vivo was inactivated when both nucleotide binding and Zuo1 interaction via the C-terminal domain were disrupted in the same mutant. The two domains of this protein thus cooperate in a way that allows for severe interference in either but not in both of them.  相似文献   

3.
The HspBP1 homolog Fes1p was recently identified as a nucleotide exchange factor (NEF) of Ssa1p, a canonical Hsp70 molecular chaperone in the cytosol of Saccharomyces cerevisiae. Besides the Ssa-type Hsp70s, the yeast cytosol contains three additional classes of Hsp70, termed Ssb, Sse and Ssz. Here, we show that Fes1p also functions as NEF for the ribosome-bound Ssb Hsp70s. Sequence analysis indicated that residues important for interaction with Fes1p are highly conserved in Ssa1p and Ssb1p, but not in Sse1p and Ssz1p. Indeed, Fes1p interacts with Ssa1p and Ssb1p with similar affinity, but does not form a complex with Sse1p. Functional analysis showed that Fes1p accelerates the release of the nucleotide analog MABA-ADP from Ssb1p by a factor of 35. In contrast to the interaction between mammalian HspBP1 and Hsp70, however, addition of ATP only moderately decreases the affinity of Fes1p for Ssb1p. Point mutations in Fes1p abolishing complex formation with Ssa1p also prevent the interaction with Ssb1p. The ATPase activity of Ssb1p is stimulated by the ribosome-associated complex of Zuotin and Ssz1p (RAC). Interestingly, Fes1p inhibits the stimulation of Ssb1p ATPase by RAC, suggesting a complex regulatory role of Fes1p in modulating the function of Ssb Hsp70s in co-translational protein folding.  相似文献   

4.
Cross‐beta fibrous protein aggregates (amyloids and amyloid‐based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI+], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome‐associated complex (RAC), composed of Hsp40‐Zuo1 and Hsp70‐Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC‐deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed because of lack of ribosome‐associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild‐type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb‐based regulatory circuit.  相似文献   

5.
Shorter J  Lindquist S 《The EMBO journal》2008,27(20):2712-2724
Self-templating amyloid forms of Sup35 constitute the yeast prion [PSI(+)]. How the protein-remodelling factor, Hsp104, collaborates with other chaperones to regulate [PSI(+)] inheritance remains poorly delineated. Here, we report how the Ssa and Ssb components of the Hsp70 chaperone system directly affect Sup35 prionogenesis and cooperate with Hsp104. We identify the ribosome-associated Ssb1:Zuo1:Ssz1 complex as a potent antagonist of Sup35 prionogenesis. The Hsp40 chaperones, Sis1 and Ydj1, preferentially interact with Sup35 oligomers and fibres compared with monomers, and facilitate Ssa1 and Ssb1 binding. Various Hsp70:Hsp40 pairs block prion nucleation by disassembling molten oligomers and binding mature oligomers. By binding fibres, Hsp70:Hsp40 pairs occlude prion recognition elements and inhibit seeded assembly. These inhibitory activities are partially relieved by the nucleotide exchange factor, Fes1. Low levels of Hsp104 stimulate prionogenesis and alleviate inhibition by some Hsp70:Hsp40 pairs. At high concentrations, Hsp104 eliminates Sup35 prions. This activity is reduced when Ssa1, or enhanced when Ssb1, is incorporated into nascent prions. These findings illuminate several facets of the chaperone interplay that underpins [PSI(+)] inheritance.  相似文献   

6.
Zuotin, a ribosome-associated DnaJ molecular chaperone.   总被引:14,自引:0,他引:14       下载免费PDF全文
W Yan  B Schilke  C Pfund  W Walter  S Kim    E A Craig 《The EMBO journal》1998,17(16):4809-4817
Correct folding of newly synthesized polypeptides is thought to be facilitated by Hsp70 molecular chaperones in conjunction with DnaJ cohort proteins. In Saccharomyces cerevisiae, SSB proteins are ribosome-associated Hsp70s which interact with the newly synthesized nascent polypeptide chain. Here we report that the phenotypes of an S.cerevisiae strain lacking the DnaJ-related protein Zuotin (Zuo1) are very similar to those of a strain lacking Ssb, including sensitivities to low temperatures, certain protein synthesis inhibitors and high osmolarity. Zuo1, which has been shown previously to be a nucleic acid-binding protein, is also a ribosome-associated protein localized predominantly in the cytosol. Analysis of zuo1 deletion and truncation mutants revealed a positive correlation between the ribosome association of Zuo1 and its ability to bind RNA. We propose that Zuo1 binds to ribosomes, in part, by interaction with ribosomal RNA and that Zuo1 functions with Ssb as a chaperone on the ribosome.  相似文献   

7.
《朊病毒》2013,7(2):144-164
Abstract

The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI+] prion – an alternative conformer of Sup35 protein – and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.  相似文献   

8.
The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI+] prion – an alternative conformer of Sup35 protein – and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.  相似文献   

9.
10.
The 70 kDa heat shock proteins (Hsp70s) are a ubiquitous class of molecular chaperones. The Ssbs of Saccharomyces cerevisiae are an abundant type of Hsp70 found associated with translating ribosomes. To understand better the function of Ssb in association with ribosomes, the Ssb-ribosome interaction was characterized. Incorporation of the aminoacyl-tRNA analog puromycin by translating ribosomes caused the release of Ssb concomitant with the release of nascent chains. In addition, Ssb could be cross-linked to nascent chains containing a modified lysine residue with a photoactivatable cross-linker. Together, these results suggest an interaction of Ssb with the nascent chain. The interaction of Ssb with the ribosome-nascent chain complex was stable, as demonstrated by resistance to treatment with high salt; however, Ssb interaction with the ribosome in the absence of nascent chain was salt sensitive. We propose that Ssb is a core component of the translating ribosome which interacts with both the nascent polypeptide chain and the ribosome. These interactions allow Ssb to function as a chaperone on the ribosome, preventing the misfolding of newly synthesized proteins.  相似文献   

11.
Ssbs of Saccharomyces cerevisiae are ribosome-associated molecular chaperones, which can be cross-linked to nascent polypeptide chains. Because Ssbs are members of a divergent subclass of Hsp70s found thus far only in fungi, we asked if the structural requirements for in vivo function were similar to those of "classic" Hsp70s. An intact peptide-binding domain is essential and an alteration of a conserved residue in the peptide-binding cleft (V442) affects function. However, Ssb tolerates a number of alterations in the peptide-binding cleft, revealing a high degree of flexibility in its functional requirements. Because binding of Ssb to peptide substrates in vitro was undetectable, we assessed the importance of substrate binding using the chimera BAB, in which the peptide binding domain of Ssb is exchanged for the analogous domain of the more "classical" Hsp70, Ssa. BAB, which binds peptide substrates in vitro, can substitute for Ssb in vivo. Alteration of a residue in the peptide-binding cleft of BAB creates a protein with a reduced affinity for peptide and altered ribosome binding that is unable to substitute for Ssb in vivo. These results indicate that Ssb's ability to bind unfolded polypeptides is likely critical for its function. This binding accounts, in part, for its stable interaction with translating ribosomes, even although it has a low affinity for peptides that detectably bind to other Hsp70s in vitro. These unusual properties may allow Ssb to function efficiently as a chaperone for ribosome-bound nascent chains.  相似文献   

12.
Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer.  相似文献   

13.
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.  相似文献   

14.
Propagation of the yeast protein-based non-Mendelian element [PSI], a prion-like form of the release factor Sup35, was shown to be regulated by the interplay between chaperone proteins Hsp104 and Hsp70. While overproduction of Hsp104 protein cures cells of [PSI], overproduction of the Ssa1 protein of the Hsp70 family protects [PSI] from the curing effect of Hsp104. Here we demonstrate that another protein of the Hsp70 family, Ssb, previously implicated in nascent polypeptide folding and protein turnover, exhibits effects on [PSI] which are opposite those of Ssa. Ssb overproduction increases, while Ssb depletion decreases, [PSI] curing by the overproduced Hsp104. Both spontaneous [PSI] formation and [PSI] induction by overproduction of the homologous or heterologous Sup35 protein are increased significantly in the strain lacking Ssb. This is the first example when inactivation of an unrelated cellular protein facilitates prion formation. Ssb is therefore playing a role in protein-based inheritance, which is analogous to the role played by the products of mutator genes in nucleic acid-based inheritance. Ssb depletion also decreases toxicity of the overproduced Sup35 and causes extreme sensitivity to the [PSI]-curing chemical agent guanidine hydrochloride. Our data demonstrate that various members of the yeast Hsp70 family have diverged from each other in regard to their roles in prion propagation and suggest that Ssb could serve as a proofreading component of the enzymatic system, which prevents formation of prion aggregates.  相似文献   

15.
16.
By using a yeast functional complementation assay, we have identified AtTDX, a new Arabidopsis thaliana gene, encoding a two-domain 42-kDa protein. The amino-terminal domain of AtTDX is closely related to the co-chaperone Hsp70-interacting protein HIP, whereas its carboxyl-terminal part contains a thioredoxin domain. Both in vivo and in vitro assays showed that AtTDX is a protein-disulfide reductase. We next found that the HIP domain of AtTDX is capable of interacting with the ATPase domain of Ssb2, a yeast heat-shock protein 70 chaperone. Strikingly, the AtTDX-Ssb2 interaction can be released under oxidative stress, a redox-dependent regulation involving the thioredoxin activity of AtTDX. A mutation inactivating the cysteine 20 of the ATPase domain of Ssb2 was found to stabilize the AtTDX-Ssb2 interaction that becomes redox-insensitive. As cysteine 20 is conserved in virtually all the Hsp70 chaperones, our results suggest that this residue might be more generally the target of redox regulations of chaperone binding activity.  相似文献   

17.
The cytosolic chaperone network of Saccharomyces cerevisiae is intimately associated with the emergence and maintenance of prion traits. Recently, the Hsp110 protein, Sse1, has been identified as a nucleotide exchange factor (NEF) for both cytosolic Hsp70 chaperone family members, Ssa1 and Ssb1. We have investigated the role of Sse1 in the de novo formation and propagation of [PSI(+)], the prion form of the translation termination factor, Sup35. As observed by others, we find that Sse1 is essential for efficient prion propagation. Our results suggest that the NEF activity is required for maintaining sufficient levels of substrate-free Ssa1. However, Sse1 exhibits an additional NEF-independent activity; it stimulates in vitro nucleation of Sup35NM, the prion domain of Sup35. We also observe that high levels of Sse1, but not of an unrelated NEF, very potently inhibit Hsp104-mediated curing of [PSI(+)]. Taken together, these results suggest a chaperone-like activity of Sse1 that assists in stabilization of early folding intermediates of the Sup35 prion conformation. This activity is not essential for prion formation under conditions of Sup35 overproduction, however, it may be relevant for spontaneous [PSI(+)] formation as well as for protection of the prion trait upon physiological Hsp104 induction.  相似文献   

18.
In eukaryotes, newly synthesized proteins interact co-translationally with a multitude of different ribosome-bound factors and chaperones including the conserved heterodimeric nascent polypeptide-associated complex (NAC) and a Hsp40/70-based chaperone system. These factors are thought to play an important role in protein folding and targeting, yet their specific ribosomal localizations, which are prerequisite for their functions, remain elusive. This study describes the ribosomal localization of NAC and the molecular details by which NAC is able to contact the ribosome and gain access to nascent polypeptides. We identified a conserved RRK(X)nKK ribosome binding motif within the beta-subunit of NAC that is essential for the entire NAC complex to attach to ribosomes and allow for its interaction with nascent polypeptide chains. The motif localizes within a potential loop region between two predicted alpha-helices in the N terminus of betaNAC. This N-terminal betaNAC ribosome-binding domain was completely portable and sufficient to target an otherwise cytosolic protein to the ribosome. NAC modified with a UV-activatable cross-linker within its ribosome binding motif specifically cross-linked to L23 ribosomal protein family members at the exit site of the ribosome, providing the first evidence of NAC-L23 interaction in the context of the ribosome. Mutations of L23 reduced NAC ribosome binding in vivo and in vitro, whereas other eukaryotic ribosome-associated factors such as the Hsp70/40 chaperones Ssb or Zuotin were unaffected. We conclude that NAC employs a conserved ribosome binding domain to position itself on the L23 ribosomal protein adjacent to the nascent polypeptide exit site.  相似文献   

19.
Genes encoding ribosomal proteins and other components of the translational apparatus are coregulated to efficiently adjust the protein synthetic capacity of the cell. Ssb, a Saccharomyces cerevisiae Hsp70 cytosolic molecular chaperone, is associated with the ribosome-nascent chain complex. To determine whether this chaperone is coregulated with ribosomal proteins, we studied the mRNA regulation of SSB under several environmental conditions. Ssb and the ribosomal protein rpL5 mRNAs were up-regulated upon carbon upshift and down-regulated upon amino acid limitation, unlike the mRNA of another cytosolic Hsp70, Ssa. Ribosomal protein and Ssb mRNAs, like many mRNAs, are down-regulated upon a rapid temperature upshift. The mRNA reduction of several ribosomal protein genes and Ssb was delayed by the presence of an allele, EXA3-1, of the gene encoding the heat shock factor (HSF). However, upon a heat shock the EXA3-1 mutation did not significantly alter the reduction in the mRNA levels of two genes encoding proteins unrelated to the translational apparatus. Analysis of gene fusions indicated that the transcribed region, but not the promoter of SSB, is sufficient for this HSF-dependent regulation. Our studies suggest that Ssb is regulated like a core component of the ribosome and that HSF is required for proper regulation of SSB and ribosomal mRNA after a temperature upshift.  相似文献   

20.
Polypeptide binding by the chaperone Hsp70 is regulated by its ATPase activity, which is itself regulated by co-chaperones including the Bag domain nucleotide exchange factors. Here, we tested the functional contribution of residues in the Bag domain of Bag-1M that contact Hsp70. Two point mutations, E212A and E219A, partially reduced co-chaperone activity, whereas the point mutation R237A completely abolished activity in vitro. Based on the strict positional conservation of the Arg-237 residue, several Bag domain proteins were predicted from various eukaryotic genomes. One candidate, Snl1p from Saccharomyces cerevisiae, was confirmed as a Bag domain co-chaperone. Snl1p bound specifically to the Ssa and Ssb forms of yeast cytosolic Hsp70, as revealed by two-hybrid screening and co-precipitations from yeast lysate. In vitro, Snl1p also recognized mammalian Hsp70 and regulated the Hsp70 ATPase activity identically to Bag-1M. Point mutations in Snl1p that disrupted the conserved residues Glu-112 and Arg-141, equivalent to Glu-212 and Arg-237 in Bag-1M, abolished the interaction with Hsp70 proteins. In live yeast, mutated Snl1p could not substitute for wild-type Snl1p in suppressing the lethal defect caused by truncation of the Nup116p nuclear pore component. Thus, Snl1p is the first Bag domain protein identified in S. cerevisiae, and its interaction with Hsp70 is essential for biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号