首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of leghemoglobin (Lb) in resin-embedded root nodules of soybean (Glycine max (L.) Merr.) was investigated using immunogold labeling. Using anti-Lb immunoglobulin G and protein A-gold, Lb or its apoprotein was detected both in cells infected by Bradyrhizobium japonicum and in uninfected interstitial cells. Leghemoglobin was present in the cytoplasm, exclusive of the organelles, and in the nuclei of both cell types. In a comparison of the density of labeling in adjacent pairs of infected and uninfected cells, Lb was found to be about four times more concentrated in infected cells. This is the first report of Lb in uninfected cells of any legume nodule; it raises the possibility that this important nodule-specific protein may participate in mediating oxygen flow to host plant organelles throughout the infected region of the nodule.Abbreviations BSA bovine serum albumin - IgG immunoglobulin G - kDA kilodalton - Lb leghemoglobin - TBST Tris-buffered saline plus Tween 20  相似文献   

2.
Although infected cell O2 concentration (Oi) is known to limit respiration and nitrogenase activity in legume nodules, techniques have not been available to measure both processes simultaneously in an individual legume nodule. Consequently, details of the relationship between nitrogenase activity and Oi are not fully appreciated. For the present study, a probe was designed that allowed open circuit measurements of H2 evolution (nitrogenase activity) and CO2 evolution (respiration rate) in a single attached soybean nodule while simultaneously monitoring fractional oxygenation of leghemoglobin (and thereby Oi) with a nodule oximeter. Compared to measurements of whole nodulated roots, use of the probe led to inhibition of nitrogenase activity in the single nodules. During oximetry measurements, total nitrogenase activity (TNA; peak H2 evolution in Ar/O2) in the single nodules was 16% of that in whole nodulated roots and 48% of nodulated root activity when Oi was not being measured simultaneously. This inhibition did not affect the nodules' ability to regulate Oi, because exposure to Ar/O2 (80:20, v/v) caused nitrogenase activity and respiration rate to decline, and this decline was linearly correlated with a concurrent decrease in Oi. When the nodules were subsequently exposed to a linear increase in external pO2 from 20 to 100% O2 at 2.7% O2/min, fractional leghemoglobin oxygenation first increased gradually and then more rapidly, reaching saturation at a pO2 between 76 and 100% O2. Plots of nitrogenase activity and respiration rate against Oi showed that rates increased with Oi up to a value of 57 nM, with half-maximal rates being attained at Oi values between 10 and 14 nM O2. The maximum nitrogenase activity achieved during the increase in pO2 (potential nitrogenase activity) was 30 to 57% of that measured in intact nodulated roots, showing that O2 limitation of nitrogenase activity could account for a significant proportion of the inhibition of TNA associated with the use of the probe. However, some factor(s) in addition to O2 must have limited the activity of single nodules at both subsaturating and saturating Oi. At Oi values greater than about 57 nM, nitrogenase activity and nodule respiration were inhibited, but, because this inhibition has been shown previously to be readily reversible when the Oi was lowered, it was not attributed to direct O2 inactivation of the nitrogenase protein. These results indicate that maximum nitrogenase activity in legume nodules is supported by a narrow range of Oi values. Possible biochemical mechanisms are discussed for both O2 limitation of nitrogenase activity at low Oi and inhibition of nitrogenase activity at high Oi.  相似文献   

3.
A mathematical model is presented to explain the regulation of nitrogenase electron allocation to N2 fixation (EAC) in legume nodules. The model is based on two assumptions: (a) that H2 inhibits N2 fixation in a competitive manner; and (b) that O2, H2, and N2 move into and out of nodules by diffusion and their movement is impeded by a diffusion barrier, the permeability of which is controlled to maintain a very low infected cell O2 concentration. When the model was used to simulate nodules displaying a range of values for total nitrogenase activity (TNA), maximum EAC values were predicted to be between 0.69 and 0.71, and a negative correlation was predicted to exist between EAC and TNA. These predictions were in good agreement with empirically derived values reported in the literature and support the suggestion that H2 inhibition of N2 fixation is a major determinant in the regulation of nitrogenase EAC in legume nodules. Two versions of the model were constructed. A closed-pore model assumed that the diffusion barrier consisted of a solid shell of water of variable thickness in the nodule cortex. An open-pore model assumed that a small number of gas-filled intercellular spaces connected the nodule central zone with the root atmosphere and these pores were opened or closed by water to provide variations in the nodule's permeability to gas diffusion. Because of differences in the diffusivity of gases in the gaseous and aqueous phases, the model predicted that, at a given infected cell O2 concentration, an open-pore diffusion barrier would result in less H2 accumulation in the infected cells than a closed-pore diffusion barrier. Therefore, the model may be used to test specific hypotheses about the physical structure of the barrier to gas diffusion in legume nodules.  相似文献   

4.
Denison RF  Harter BL 《Plant physiology》1995,107(4):1355-1364
Two current hypotheses to explain nitrate inhibition of nodule function both involve decreased O2 supply for respiration in support of N2 fixation. This decrease could result from either (a) decreased O2 permeability (PO) of the nodule cortex, or (b) conversion of leghemoglobin (Lb) to an inactive, nitrosyl form. These hypotheses were tested using alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus) plants grown in growth pouches under controlled conditions. Nodulated roots were exposed to 10 mM KNO3 or KCI. Fractional oxygenation of Lb under air (FOLair), relative concentration of functional Lb, apparent PO, and O2-saturated central zone respiration rate were all monitored by nodule oximetry. Apparent PO and FOLair in nitrate-treated nodules decreased to <50% of values for KCI controls within 24 h, but there was no decrease in functional Lb concentration during the first 72 h. In nitrate-treated alfalfa, but not in birdsfoot trefoil, FOLair, apparent PO, and O2-saturated central zone respiration rate decreased during each light period and recovered somewhat during the subsequent dark period. This species difference could be explained by greater reliance on photoreduction of nitrate in alfalfa than in birdsfoot trefoil. Computer simulations extended the experimental results, showing that previously reported decreases in apparent PO of Glycine max nodules with nitrate exposure cannot be explained by hypothetical decreases in the concentration or O2 affinity of Lb.  相似文献   

5.
Regulation of the intracellular concentration of substrates is essential for the maintenance of a stable cellular environment. Diffusion and reaction processes supply and consume substrates within cells and determine their steady-state concentrations. To realistically represent these processes by computer simulation they must be modeled in three dimensions. Yet three-dimensional models are inherently computing intensive. This study describes a method, which substantially simplifies the modeling of diffusion into a polyhedral body (a cube), that was used as a model representation of a cell. The method is applied to a case study of oxygen diffusion into nitrogen-fixing, rhizobia-infected cells in legume nodules. The method involved generating a one-dimensional representation of the three-dimensional problem to provide a "surface area profile" of three-dimensional diffusion. The one-dimensional models were significantly easier to program, several orders of magnitude faster to solve and in this study were validated by assessing their results against those of comparable three-dimensional models of diffusion into the same body. The results show the one-dimensional method to be a close approximation of a three-dimensional source-sink problem with systematic differences below 10% for fractional oxygenation of leghemoglobin, cell respiration and nitrogenase activity. Larger differences between models (up to 45%) in the predicted average and innermost O(2)concentrations had no effects on the physiological conclusions of the study, but were attributed to the poorer resolution of the three- than the one-dimensional model, and to an inherent simplification in the derivation of the one-dimensional surface area profiles. The one-dimensional modeling approach was found to be a simple, yet powerful tool for the study of diffusion and reaction in biological systems.  相似文献   

6.
Oxygen and the regulation of nitrogen fixation in legume nodules   总被引:3,自引:0,他引:3  
In N2-fixing legume nodules, O2 is required in large amounts for aerobic respiration, yet nitrogenase, the bacterial enzyme that fixes N2, is O2 labile. A high rate of O2 consumptition and a cortical barrier to gas diffusion work together to maintain a low, non-inhibitory O2 concentration in the central, infected zone of the nodule. At this low O2 concentration, cytosolic leghemoglobin is required to facilitate the diffusion of O2 through the infected cell to the bacteria. The resistance of the cortical diffusion barrier is variable and is used by legume nodules to regulate the O2 concentration in the infected cells such that it limits aerobic respiration and N2 fixation at all times. The resistance of the diffusion barrier and therefore the degree of O2 limitation seems to be regulated in response to changes in the O2 concentration of the central infected zone, the supply of phloem sap to the nodule, and the rate of N assimilation into the end products of fixation.  相似文献   

7.
The O2 permeability of legume root nodules is under physiological control; decreases in permeability are triggered by various forms of stress. Two linked mathematical models were used to explore several hypotheses concerning the physical nature of the variable diffusion barrier in nodules. Respiration and diffusion of dissolved O2 and oxygenated leghemoglobin were simulated for the nodule cortex and the nodule interior. Measured nodule permeabilities were shown to be inconsistent with the hypothesis that large numbers of air-filled pores penetrate the diffusion barrier. Changes in the affinity of leghemoglobin for O2 or in the rate of cytoplasmic streaming in diffusion barrier cells did not result in the large changes in O2 permeability reported for real nodules. The presence or absence, but not the thickness, of aqueous plugs in radial pores through the cortex was found to have a large effect on permeability. Flooding of intercellular spaces, either between layers of cells in the cortex or in the nodule interior, also caused large changes in simulated permeability. The unsteady-state O2 method for determining nodule permeability was tested using data generated by the model. The accuracy of the method was confirmed, provided that certain assumptions (full oxygenation of leghemoglobin under pure O2 and uniform conditions in the nodule interior) are met.  相似文献   

8.
Previous simulation models for the diffusion and reaction of oxygen in legume nodules were based on infected cells and neglected adjacent uninfected cells. This study uses a three-dimensional model of the central zone of legume nodules made up of the two cell types represented by a geometrically defined, space-filling, binary combination of polyhedra, each with bevelled edges to allow for a network of intercellular gas spaces. The model predicted a distinctively compartmentalized distribution of [O2] between uninfected and infected cells; with high O2 concentrations for an uninfected cell being consistent with, and necessary for, efficient operation of uricase and ureide synthesis and low O2 concentrations across most of the infected cell providing a suitable environment for N2-fixation. Compartmentalization of O2 also predicted significant O2 fluxes between cell types, compromising maintenance of low [O2] in infected cells, as well as high [O2] in uninfected cells. The results predict that there might be significant resistance to O2 diffusion across the cell : cell interface due to the plasmalemma and cell walls.  相似文献   

9.
The Nms-22 and leghemoglobin (Lb) genes are expressed exclusively in the infected cells of alfalfa root nodules. Expression of these two late nodulin genes originated at distinct cellular boundaries within the symbiotic region of the nodule. The Nms-22 gene was expressed in all infected cells, including those just adjacent to the meristematic region. Lb gene expression was induced in older infected cells and was most prominent in the mature region of the nodule. Despite this temporal separation of gene expression, both the Nms-22 and Lb genes were expressed in nodules elicited by bacA mutants in which bacteroid development has been blocked just after release from the infection thread.  相似文献   

10.
Nodule oximetry, based on spectrophotometric measurements ofleghaemoglobin (Lb) oxygenation in intact nodules, has providednumerous insights into legume nodule physiology. Fractionaloxygenation of Lb (FOL) has been monitored at various wavelengths,but comparisons among wavelengths have not been published previously.Changes in transmittance were monitored simultaneously at 660nm and either 560 or 580 nm as FOL was manipulated by changingthe O2 concentration around nodules of Medicago sativa L. orLotus comiculatus L. Video microscopy at 580 nm was used togenerate two-dimensional maps of FOL gradients in intact nodules.In general, all three wavelengths gave similar results. Smalldiscrepancies between 660 and 580 nm, sometimes seen in noduleswith high O2 permeability, may indicate interference by theferric Lb peak at 625 nm. A slightly longer wavelength, forexample 670 nm, might be preferable. No significant discrepanciesamong wavelengths were seen in nodules whose O2 permeabilityhad been reduced by a 48 h exposure to 10 mM nitrate. Minorgradients in FOL were seen in nodules of M. sativa and Trifoliumrepens L. under air and steeper gradients could be induced byvarious treatments. The existence of these gradients indicatesat least some restriction of longrange O2 diffusion within theinfected zone. The FOL maps do not have enough spatial resolutionto measure gradients within infected cells. Key words: Leghaernoglobin oxygenation, nodules, spectrophotometry, nodule oximetry  相似文献   

11.
Applied Biochemistry and Microbiology - Like many other hemoglobins, leghemoglobin (Lb), the hemoglobin of legume nodules, demonstrates peroxidase activity and can oxidize various substances with...  相似文献   

12.
To assess the role of O2 in the regulation of nodule metabolism following a decrease or an increase in temperature, the fractional oxygenation of leghemoglobin (FOL) was measured in soybean (Glycine max L. Merr.) nodules during rapid and gradual changes in temperature from 20[deg]C to either 15 or 25[deg]C. The affinity of leghemoglobin for O2 was also measured at each temperature and the values were used to calculate the infected cell O2 concentration (Oi). After nodules were transferred to 15[deg]C, FOL and Oi increased and adenylate energy charge (AEC = [ATP + 0.5ADP]/[ATP + ADP + AMP]) increased from 0.70 to 0.78. The temperature increase was associated with a decrease in FOL and Oi. We concluded that changes in nodule temperature alter the respiratory demand of the nodules for O2, resulting in a change in Oi and a shift in the balance between ATP consumption and ATP production within the nodule tissue.  相似文献   

13.
Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted, this hypothesis has never been tested in planta. Using RNAi, we abolished symbiotic leghemoglobin synthesis in nodules of the model legume Lotus japonicus. This caused an increase in nodule free oxygen, a decrease in the ATP/ADP ratio, loss of bacterial nitrogenase protein, and absence of SNF. However, LbRNAi plants grew normally when fertilized with mineral nitrogen. These data indicate roles for leghemoglobins in oxygen transport and buffering and prove for the first time that plant hemoglobins are crucial for symbiotic nitrogen fixation.  相似文献   

14.
A fiber optic spectrophotometric system was used to monitor the in vivo oxygenation of leghemoglobin in intact, attached soybean root nodules (Glycine max L. Merr. × USDA 16 Bradyrhizobium japonicum) which were flattened during development by growth in narrow, glass-walled cuvettes. When equilibrated at an external pO2 of 20 kilopascals, leghemoglobin was 36.6 ± 5.4% oxygenated, a value estimated to represent an infected cell O2 concentration of 21.5 nanomolar. Increasing the external pO2 from 20 to 25 kilopascals caused a rapid increase in leghemoglobin oxygenation, followed by a recovery to the initial level, all within 7.5 minutes. At 25 kilopascals O2, the rates of H2 and CO2 evolution were similar to those at 20 kilopascals. Since respiration had not increased, the results support the proposal that nodules adapt to increased external pO2 by regulating their resistance to O2 diffusion.  相似文献   

15.
Ross EJ  Kramer SB  Dalton DA 《Phytochemistry》1999,52(7):1203-1210
Ascorbate and ascorbate peroxidase are important antioxidants that are abundant in N2-fixing legume root nodules. Antioxidants are especially critical in root nodules because leghemoglobin, which is present at high concentrations in nodules, is prone to autoxidation and production of activated oxygen species such as O2.- and H2O2. The merits of ascorbate and ascorbate peroxidase for maintaining conditions favorable for N2 fixation were examined in two model systems containing oxygen-binding proteins (purified myoglobin or leghemoglobin) and N2-fixing microorganisms (free-living Azorhizobium or bacteroids of Bradyrhizobium japonicum) in sealed vials. The inclusion of ascorbate alone to these systems led to enhanced oxygenation of hemeproteins, as well as to increases in nitrogenase (acetylene reduction) activity. The inclusion of both ascorbate and ascorbate peroxidase resulted in even greater positive responses, including increases of up to 4.5-fold in nitrogenase activity. In contrast, superoxide dismutase did not provide beneficial antioxidant action and catalase alone provided only very marginal benefit. Optimal concentrations were 2 mM for ascorbate and 200 micrograms/ml for ascorbate peroxidase. These concentrations are similar to those found in intact soybean nodules. These results support the conclusion that ascorbate and ascorbate peroxidase are beneficial for maintaining conditions favorable for N2 fixation in nodules.  相似文献   

16.
Diffusion of gases through legume nodules is important for nitrogen fixation. A mathematical model is presented for diffusion and enzymatic reaction for legume nodules with a reactive core and an inert shell. The transient model is solved numerically for spherical geometry for acetylene reduction by nitrogenase enzyme. The results are used to estimate the diffusivities of acetylene and ethylene in the nodules by comparing predicted and experimental lag times. The experimental results are also analyzed using an effectiveness factor plot for spherical nodules with inert shells and reactive cores. The results show that the diffusivities are slightly higher than those for acetylene and ethylene in water because of some contribution of gas phase diffusion. Applications to oxygen diffusion through nodule tissue are suggested.  相似文献   

17.
A novel, pulse-modulated spectroscopic system for measuring fractional leghemoglobin oxygenation and infected cell O2 concentration (Oi) in intact attached nodules of soybean (Glycine max) is described. The system is noninvasive and uses a pulsed (1000 Hertz) light-emitting diode coupled to an optical fiber to illuminate the nodule with light at 660 nanometer. A second optical fiber receives a portion of the light reflected from the nodule and directs this to a photodiode. A lock-in amplifier measures only the signal from the photodiode which is in phase with the pulsed light from the light-emitting diode, and the voltage output from the amplifier, proportional to reflectance, is used to calculate fractional leghemoglobin oxygenation and the nanomolar concentration of free O2 in the infected cells of the nodule (Oi). The system was used to show that inhibition of nitrogenase activity in soybean nodules by NO3 treatment, stem-girdling, continuous darkness, or nodule disturbance is caused by a reduction in Oi and limitation of respiration in support of nitrogenase activity. A plot of nitrogenase activity (measured as peak H2 evolution in Ar:O2) versus Oi for the various treatments was consistent with the concept that Oi limits in vivo nitrogenase activity in legume nodules under adverse conditions. The potential for using Oi to estimate nitrogenase activity in laboratory and field-grown legumes is discussed.  相似文献   

18.
Nonsymbiotic hemoglobins (nsHbs) and leghemoglobins (Lbs) are plant proteins that can reversibly bind O(2) and other ligands. The nsHbs are hexacoordinate and appear to modulate cellular concentrations of NO and maintain energy levels under hypoxic conditions. The Lbs are pentacoordinate and facilitate the diffusion of O(2) to symbiotic bacteroids within legume root nodules. Multiple lines of evidence suggest that all plant Hbs evolved from a common ancestor and that Lbs originated from nsHbs. However, little is known about the structural intermediates that occurred during the evolution of pentacoordinate Lbs from hexacoordinate nsHbs. We have cloned and characterized a Hb (ppHb) from the root nodules of the ancient caesalpinoid legume Chamaecrista fasciculata. Protein sequence, modeling data, and spectral analysis indicated that the properties of ppHb are intermediate between that of nsHb and Lb, suggesting that ppHb resembles a putative ancestral Lb. Predicted structural changes that appear to have occurred during the nsHb to Lb transition were a compaction of the CD-loop and decreased mobility of the distal His inhibiting its ability to coordinate directly with the heme-Fe, leading to a pentacoordinate protein. Other predicted changes include shortening of the N- and C-termini, compaction of the protein into a globular structure, disappearance of positive charges outside the heme pocket and appearance of negative charges in an area located between the N- and C-termini. A major consequence for some of these changes appears to be the decrease in O(2)-affinity of ancestral nsHb, which resulted in the origin of the symbiotic function of Lbs.  相似文献   

19.
Mathematical models were developed to test the likelihood that large cytosolic adenylate concentration gradients exist across the bacteria-infected cells of legume nodules. Previous studies hypothesized that this may be the case to account for the unusually low adenylate energy charge (AEC; 0.65) measured in the plant fraction of metabolically active nodules (M.M. Kuzma, H. Winter, P. Storer, I. Oresnik, C.A. Atkins, D.B. Layzell [1999] Plant Physiol 119: 399-407). Simulations coupled leghemoglobin-facilitated O(2) diffusion into the infected cell, through bacteroid nitrogenase activity, with the ATP demand for transport and ammonia assimilation in the plant fraction of ureide- and amide-producing nodules. Although large cytosolic adenylate gradients were predicted to exist in both nodule types, amide nodules were predicted to have steeper AEC gradients (0.82-0.52) than ureide nodules (0.82-0.61). The differences were attributed to an additional ATP demand for Asn synthesis in the amide nodule. Simulations for nodules transferred to an Ar:O(2) atmosphere predicted a major reduction in the magnitude of adenylate gradients and an increase in the AEC of the plant fraction. Results were consistent with a number of experimental studies and were used to propose an experimental test of the models.  相似文献   

20.
A method is presented for the rapid measurement of the spectral properties of detached nodules of pea (Pisum sativum L. cv “Sparkle”) by diffuse reflectance spectroscopy. After correcting the spectra for surface light scattering, the spectrum of leghemoglobin is obtained. From this, the fractional oxygenation of leghemoglobin and the internal O2 concentration can be calculated. With this method, we determined internal O2 while measuring nitrogenase activity (C2H2) in detached pea nodules over a range of external O2 concentrations. Nitrogenase activity was maximum when leghemoglobin was 25% oxygenated, corresponding to a calculated free O2 concentration of 45 nanomolar in infected cells. Advantages of this method over previous methods which employed transmitted light are: (a) many nodules can be assayed simultaneously, (b) nitrogenase activity (C2H2) can be determined at the same time as spectra are recorded, and (c) spectra can be obtained from nodules submerged in buffer containing metabolic effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号